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CAN Traces A”Gmaly

Output

* First, analyze CAN traces to characterize the normal behaviors of the vehicle operation(CAN
Matrix). we also need specific content of CAN messages, such as speed, torque of engine. We
need to find appropriate features that can be helpful to find deviations. These combined data are
fed into anomaly detection algorithm as selected feature.

* Then, design adaptive anomaly detection algorithm. An attack detector is just a classifier: it
distinguishes system states reached when the system is operating under normal conditions from
the states reached when the system is under attack. choose safety envelopes

* Next, compute the safety envelopes. As every in-vehicle network can have its own characteristics
and the characteristics are even subject to change over time, there is no single equation that
covers the entire variety of in-vehicle network behaviors. Therefore, | will employ statistical

methods to compute safety envelopes. For example, modified PCA or neural network can be

applied to compute an anomaly score.



Real-Time Computing Lab (RTCL) in the EECS at The University of Michigan
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* C(Clock-based Detection :

3L
Let Csrye be a “true’” clock which reports the true time at
any moment and C; be some other non-true clock. We

define the terms “clock offset, frequency, and skew™ as
follows.

e offset: difference in the time reported by clock C;
and the true clock Cye. We define relative offset as
the offset between two non-true clocks.

e frequency: the rate at which clock C; advances.
Thus. the frequency at time 7 is Ci(r) = dC;(r) /d1.

e skew: difference between the frequencies of clock
C; and the true clock C,,,.. We define relative skew
as the diFFprence in skews of two non-true clocks.

* ChoKT, Shin K G. Fingerprinting Electronic Control Units for Vehicle Intrusion Detection. 25th

CIDS: Clock-based IDS
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CIDS: Clock-based IDS

Clock Offset -1 min +1 min 0 min ‘

Clock Skew -1/60 +1/60 0 ‘
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* C(Clock-based Detection :

7 3L

Let Cirye be a “true” clock which reports the true time at
any moment and C; be some other non-true clock. We
define the terms “clock offset, frequency, and skew™ as
follows.

e offset: difference in the time reported by clock C;
and the true clock C;e. We define relative offset as
the offset between two non-true clocks.

e frequency: the rate at which clock C; advances.
Thus, the frequency at time 7 is Ci(r) = dC;(r) /dtr.

e skew: difference between the frequencies of clock
C; and the true clock C,,,.. We define relative skew
as the difﬂsrence in skews of two non-true clocks.

* ChoKT, Shin K G. Fingerprinting Electronic Control Units for Vehicle Intrusion Detection. 25th
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Cyber—physical approach to
checking the norm operation of
braking

* [4]Cho KT, Shin KG. CPS Approach to Checking Norm Operation of a Brake-by-Wire System. ACM/IEEE
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Figure 2: Checking consistency between

driver’s intention and wvehicle braking behavior,

and brake data and environment.
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Figure 3: Norm braking models, which are based
on the Brush tire-friction model and constructed
by extrapolating low slip measurements.
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Figure 4: Overview of the proposed BAD (Brake
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A 32 : The rationale behind using voltage for fingerprinting
ECUs is the existence of small inherent discrepancies in
different ECUs’  voltage outputs when they inject messages.
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* [1]Cho KT, Shin K G. Viden: Attacker Identification on In-Vehicle Networks

* 24th ACM Conference on Computer and Communications Security (CCS'17)
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* This paper proposes a novel scheme, called Viden (Voltagebased attacker identification), which can identify

the attacker ECU by measuring and utilizing voltages on the in-vehicle network.
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(a) Transceiver schematic. {(b) When sending a 0-bit.

Figure 2: Output schematics of a CAN transceiver.
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Figure 1: Message transmission via outputting voltages.

Figure 3: An overview of Viden.
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