

功耗攻击防御技术在 分组密码中的应用研究 硕士论文答辩

姓 名: 袁征研究方向: 嵌入式系统指导教师: 李仁发 教授

Rijndael算法以其强安全性、高性能、 易用性和灵活性等优点在美国国家 标准与技术研究院(NIST)的公开评。新述的选中获胜,成为新的数据加密标准 AES (Advanced Encryption Standard)。

- DPA、HO-DPA、glitch攻击等功耗攻击对AES 造成了严重的威胁。
- 现有的防御技术在一定程度上存在着计算复杂、 占用芯片面积大、速度慢、吞吐量低、无法抵 抗HO-DPA攻击和glitch攻击等缺陷。

介绍 3/3 ——功耗攻击防御技术

≻隐藏技术

> 乱序技术

▶ 掩码技术

▶ 秘密共享技术

Hiding是指通过将设备在每个时钟周 Hiding是指改变密码算法的加密步 Masking是指将加密过程中的每一个 中的生物和发展的的。然后将这 些份额分别分给不同的参与者,使每 个参与者都拥有其中的一个share。在 秘密信息恢复时,当且仅当足够数量 的share结合起来,才能重建秘密信息。 秘密共享近年来才应用于硬件加密。

提出了一种GF(24)域上基于掩码的AES抗功耗攻击 方案。

提出了一种基于秘密共享的AES抗功耗攻击方案。

 $a = [a_{7}, a_{6}, a_{5}, a_{4}, a_{3}, a_{2}, a_{1}, a_{0}]$ $b = [b_7, b_6, b_5, b_4, b_3, b_2, b_1, b_0]$ G F (2^8): $a_7 a_6 a_5 a_4 a_3 a_2 a_1 a_0$ $b_7 \ b_6 \ b_5 \ b_4 \ b_3 \ b_2 \ b_1 \ b_0$ • $a(x) = a_7 x^7 + a_6 x^6 + a_5 x^5 + a_4 x^4 + a_3 x^3 + a_5 x^2 + a_1 x + a_0$ • $b(x) = b_7 x^7 + b_6 x^6 + b_5 x^5 + b_4 x^4 + b_3 x^3 + b_7 x^2 + b_1 x + b_0$ $a(x)+b(x); a(x)\cdot b(x);$ **b**¹(**x**) *GF*(2⁸) → *GF*(2⁴) : *T_{map}*算法 **T**map 算法 $a = [a_7, a_6, a_5, a_4, a_3, a_2, a_1, a_0]$ 输入(28):a 每 (285) a4 a3 a2 a1 a0 输出: a_h , $a_l \notin GF(2^4)$ 1. \Box Ξ : $a = \{a_7, a_6, a_5, a_4, a_3, a_2, a_1, a_0\} \in GF(2^8)$ 2. G Ξ : $a_{h3} a_{h2} a_{h1} a_{h0} a_{h0}$ $a_{A} = a_1 + a_7$, $a_{B} = a_5 + a_7$, $a_{C} = a_4 + a_6$; 3. $\Rightarrow a_h = [a_{h_{12}}, a_{h_{2}}, a_{h_{3}}, a_{h_{0}}]a_{h_{2}} \neq a_{h_{3}}, a_{h_{2}}, a_{h_{1}}, a_{h_{2}}, a_{h_{1}}, a_{h_{2}}] \quad a_{h_{1}} = a_{A} + a_{C},$ a_5 , $a_{B} = a_{2} + a_{4}, \quad a_{D} = a_{A}, \quad a_{A} = a_{1} + a_{2}, \quad a_{A} = a_{C} + a_{0}$ 输出: $a_{1} = \{a_{12}, a_{12}, a_{13}, a_{14}\}, a_{1} = \{a_{12}, a_{13}, a_{13}\}$

介绍

实验

&结论

本文

工作

ShiftRows(x+m) = ShiftRows(x) + ShiftRows(m) MixColumn(x+m) = MixColumn(x) + MixColumn(m) AddroundKey(x+m) = AddroundKey(x) + AddroundKey(m) $Sbox(x+m) \neq Sbox(x) + Sbox(m) \rightarrow$ Sbox(x+m) = Sbox(x) + Sbox(m) = Sbox(x) + m'

S-盒设计方案: • $S(x) = A \cdot x^{-1} + B$ $(a+m)^{-1} = ((a_h + m_h)x + (a_l + m_l))^{-1}$ $= (a'_h + m'_h)x + (a'_l + m'_l)$ $a_h' = a_h \times ((a_h^{2} \times \{e\}) + (a_h \times a_l) + a_l^{2})^{-1}$ $a_l' = (a_h + a_l) \times ((a_h^{2} \times \{e\}) + (a_h \times a_l) + a_l^{2})^{-1}$

背景

本文

工作

介绍

实验

&结论

来,在算法执行时以"查表"的方式获得输出值。 输入 输出 LUT ((x+m), m) $\rightarrow x^2 \times \{e\} + m$ $T_{a2}:$ ((x+m), (y+m')) \rightarrow ((x+m) + (y+m')) × (y+m') T_{dm} : $((x+m), (y+m')) \rightarrow (x+m) \times (y+m')$ T_{inv}: ((x+m), m) $\rightarrow T_{inv}(x) + m$ $\rightarrow [(x_h + m_h), (x_l + m_l)]$ T_{map}: (x+m) $(x_h'+m_h'), (x_l'+m_l') \to (x''+m'')$ T_{map}^{-1} : (x+m) m (x+m) (y+m') (x+m) (y+m') (x+m) m (x+m) $(x_{h}'+m_{h}')(x_{l}'+m_{l}')$ T'_{map}^{-1} T' inv T' T_{d2} T_{d1} T_{dm} map (x'+m') $(x^2 \times e+m)$ $(((x+m)+(y+m'))\times(y+m'))$ $((x+m)\times(y+m'))$ $(T_{inv}(x)+m)$ $(x_h+m_h)(x_l+m_l)$

LUT:提前计算所有输入对应的输出值并存储起

安全性:

背景

本文

介绍

实验

&结论

抗HO-DPA攻击:

- ➤ S-盒内部的所有的中间值都被掩码掩盖;
- ▶ 掩盖S-盒内部每个中间值的掩码并不相同;
- ▶ 不能通过这些掩盖后的中间值获取信息。

抗glitch攻击:

- ▶ 新的S-盒(S box)使用LUT查找表操作取代了易受glitch攻 击的逻辑与门运算;
- ▶ 所有中间值都被不同的掩码值掩盖;
- ▶ glitch攻击难以成功。

本文工作 2/2 ——基于秘密共享的AES抗功耗攻击方3 AES S-盒 Linear Function *n=L(m*): 0 0 0 1 1 1 1 s = a + e + f + g + h + 1;1 1 0 0 0 1 1 1 1 t = a + b + f + g + h + 1;1 1 1 0 0 0 1 1 0 u = a + b + c + g + h;0 S(x) =• x^{-1} + v = a + b + c + d + h0 w = a + b + c + d + e. 1 1 1 1 1 0 0 1 介绍 $0 \ 1 \ 1 \ 1 \ 1 \ 1 \ 0$ 1 x = b + c + d + e + f + 1;0 0 0 0 1 1 1 1 1 y = c + d + e + f + g + 1;m: [h, g, f, e, d, c, b, a]z = d + e + f + g + h.n: [z, y, x, w, v, u, t, s] $n_1 = f_1(m_2, p_2, r)$: $n_2 = f_2(m_1, p_1, r)$ $s_1 = a_2 + e_2 + f_2 + g_2 + h_2 + p_2 + r$ $s_2 = a_1 + e_1 + f_1 + g_1 + h_1 + p_1 + r_2$ 室验 $t_1 = a_2 + b_2 + f_2 + g_2 + h_2 + p_2 + r$ $t_2 = a_1 + b_1 + f_1 + g_1 + h_1 + p_1 + r_2$ &结论 $u_1 = a_2 + b_2 + c_2 + g_2 + h_2 + r_2$ $u_2 = a_1 + b_1 + c_1 + g_1 + h_1 + r$ $v_1 = a_2 + b_2 + c_2 + d_2 + h_2 + r$ $v_2 = a_1 + b_1 + c_1 + d_1 + h_1 + r$ $w_1 = a_2 + b_2 + c_2 + d_2 + e_2 + r$ $w_2 = a_1 + b_1 + c_1 + d_1 + e_1 + r$ $x_1 = b_2 + c_2 + d_2 + e_2 + f_2 + p_2 + r_2$ $x_2 = b_1 + c_1 + d_1 + e_1 + f_1 + p_1 + r_2$ $y_1 = c_2 + d_2 + e_2 + f_2 + g_2 + p_2 + r_2$ $v_2 = c_1 + d_1 + e_1 + f_1 + g_1 + p_1 + r_2$ $z_1 = d_2 + e_2 + f_2 + g_2 + h_2 + r;$ $z_2 = d_1 + e_1 + f_1 + g_1 + h_1 + r$.

本文工作 2/2 ——基于秘密共享的AES抗功耗攻击方到

正确性:

- 不完整性(秘密拆分函数至少要独立于输入变量*m*的一个share):
 ▶ 秘密拆分函数为: n₁ = £₁(m₂, p₂, r)、 n₂ = £₂(m₁, p₁, r);
 - 等值增恤进share的独租要与期望的输出相等):
 - ➤ SubBytes变换;
 - ▶ ShiftRows变换;
 - ▶ Mixcolumns变换;
 - ▶ AddRoundKey变换。
 - 均衡性(等概率分布):

▶ 当*m* = (*m*₁, *m*₂)和*p* = (*p*₁, *p*₂)是等概率分布时,经过秘密 拆分函数*n*₁ = *£*₁(*m*₂, *p*₂, *r*), *n*₂ = *£*₂(*m*₁, *p*₁, *r*)运 输出结果*n*₁, *n*₂也满足等概率分布。

本文工作 2/2 ——基于秘密共享的AES抗功耗攻击方3

安全性:

介绍

实验

&结论

本文

抗HO-DPA攻击:

- ▶ 输入被分成了2个share;
- ▶ f1独立于 m_1 、 f_2 独立于 m_2 ;
- ➢ HO-DPA攻击仅能得到两组独立无关的中间值,也就不能通过对这两组中间值的统计分析来获取信息。

抗glitch攻击:

- ▶ 由于输入被秘密拆分函数分成了两个share,并且分别进行计算,因此发生在一个share上的glitch与发生在另一个share上的glitch并不同步;
- ▶ 引入了随机值r;
- ▶ 难以通过一组share上的glitch攻击来获取整个电路的信息。

实验&缉	吉论 1/4 ——	—实验结果						
	表1. S-盒在FPGA平台的执行结果比较							
背景		平台	方法	面积 (slices)	延迟 (ns)			
	Kamoun ^[45]	Xilinx Virtex-4	算法级掩码	100	16.670			
介绍		Xilinx Virtex-4	秘密共享	70	9.110			
	本文设计	Xilinx Virtex-5	掩码	127	14.299			
≤文 一 化		Xilinx Virtex-5	秘密共享	30.00% lesser	45.35% lesser			
	表2. S-盒在ASIC平台的执行结果比较							
实验		平台	方法	面积 (gates)	延迟 (ns)			
、&结论/	Baek ^[25]	0.18µm CMOS	算法级掩码	1,023	27.0			
	本文设计	0.18µm CMOS	秘密共享	609	10.0			
作			怭 峾天子	40.47% lesser	62.96%			

实验&结论 1/4 ——实验结果

背

工作

	表 3 AES在FPGA平台的执行结果比较						
R		平台	方法	面积 (slices)	速度 (MHz)	吞吐量 (Mbps)	
	Matsumoto ^[52]	Xilinx Virtex-2	门级掩码	2,744	25.4	155	
	Popp ^[49]	Xilinx Virtex-2	门级掩码	12,691	15.7	-96	
介绍	Trichina ^[36]	Xilinx Virtex-2	与门掩码	3,017	44.0	5 12	
	Nikova ^[39]	Xilinx Virtex-2	秘密共享	10,619	63.7	337	
	Mentens ^[53]	Xilinx Virtex-2	混合掩码	4,452*	23.0	29	
-	Akkar ^[24]	Xilinx Virtex-E	乘法掩码	4,175	43.8*	140	
	Oswald ^[54]	Xilinx Virtex-E	加法掩码	3,580	43.9*	157	
	Kamoun ^[45]	Xilinx Virtex-4	筧法掩码	2 281 /	137 0		
实验 结论		Xilinx Virtex-4	秘密共享P	2,618	197.2	2294	
	本文设计	XIIINX VIRTEX-4	他 省 共 字 P	2,010	197.2	ZZ94	
		Xilinx Virtex-5	淮 尚	4,992	116.0	135U	
步		Xilinx Virtex-5	秘密共享C	795	272	1588	
		Xilinx Virtex-5	秘密共享 <mark>P</mark>	3.28 %	1.25 tin	1.6 times	
1				lesser	faster	faster	

实验&结论 1/4 ——实验结果

	表4 AES在ASIC平台的执行结果比较						
背景		平台	方法	面积 (gates)	速度 (MHz)	吞吐量 (Mbps)	
	Lin ^[46]	0.18µm CMOS	门级掩码	20,100	35.6*	111.0	
	Trichina ^[47]	0.18µm CMOS	与门掩码	18,600	46.4*	145*	
介绍	Tiri ^[48]	0.18µm CMOS	门级掩码	30,300	13.0*	40.6*	
	Popp ^[49]	0.18µm CMOS	门级掩码	45,850	25.0*	78.0*	
	Back ^[25]	0.18µm CMOS	算法级掩码	25,700	17.5*	<u>14.0*</u>	
文	Xinjian ^[50]	0.18µm CMOS	布尔掩码	49,000		<u></u>	
_作	Tiri ^[51]		门奶捧茄	2/15 000	85		
实验	本文设计	0.18µm CMOS	秘密共享P	17,117	143	1664.0*	
&结论			怭峾六字┏	1/,7//	143	1004.0	
			۲.	7.79 % lesser	1.43 times faster	1.85 times larger	
一步 作					90 Gra		

基于秘密共享的AES加密算法的深度研究

(考虑对AES的求逆变换进行秘密拆分,通过引入高斯变换 等函数对拆分进行随机化,从而进一步加大攻击难度)

采用多种防御技术相结合的的AES加密算法研究 (考虑采用隐藏、乱序、掩码、秘密共享策略中的两种或多 种防御算法相结合的方式对AES进行加密)

采用实际的功耗攻击分析

(考虑使用功耗攻击专用板SASEBO进行功耗轨迹的抓取和 分析,从而在理论和实践两方面对算法的安全性进行分析)

谢谢答辩组备位老师!

