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Figure 1: DCGAN generator used for LSUN scene modeling. A 100 dimensional uniform distribu-
tion Z is projected to a small spatial extent convolutional representation with many feature maps.
A series of four fractionally-strided convolutions (in some recent papers, these are wrongly called
deconvolutions) then convert this high level representation into a 64 x 64 pixel image. Notably, no
fully connected or pooling layers are used.

4. IR RR

FT=FEE4E: Large-scale Scene Understanding (LSUN). Imagenet-1k.
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Figure 2: Generated bedrooms after one training pass through the dataset. Theoretically, the model
could learn to memorize training examples, but this is experimentally unlikely as we train with a
small learning rate and minibatch SGD. We are aware of no prior empirical evidence demonstrating
memorization with SGD and a small learning rate.
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Figure 3: Generated bedrooms after five epochs of training. There appears to be evidence of visual
under-fitting via repeated noise textures across multiple samp]es| such as the base boards of some of

the beds.

{5 FF} DCGAN Rl 250 48 43 2% CIFAR-10 F1 SVHN $r# (1) 45 51

Table 1: CIFAR-10 classification results using our pre-trained model. Our DCGAN is not pre-
trained on CIFAR-10, but on Imagenet-1k, and the features are used to classify CIFAR-10 images.

Model Accuracy | Accuracy (400 per class) | max # of features units
I Layer K-means 80.6% 63.7% (£0.7%) 4800
3 Layer K-means Learned RF 82.0% T0.7% (£0.7%) 3200
View Invariant K-means 81.9% 72.69% (£0.7%) 6400
Exemplar CNN 84.3% T7.4% (£0.2%) 1024
DCGAN (ours) + L2-SVM 82.8% 73.8% (£0.4%) 512

Table 2: SVHN classification with 1000 labels

Model error rate

KNN T7.93%

TSVM 66.55%

MI+KNN 65.63%

MI+TSVM 54.33%

MI1+M2 36.02%

SWWAE without dropout 27.83%

SWWAE with dropout 23.56%

DCGAN (ours) + L2-SVM 22.48%
Supervised CNN with the same architecture | 28.87% (validation)
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Figure 5: On the right, guided backpropagation visualizations of maximal axis-aligned responses
for the first 6 learned convolutional features from the last convolution layer in the discriminator.
Notice a significant minority of features respond to beds - the central object in the LSUN bedrooms
dataset. On the left is a random filter baseline. Comparing to the previous responses there is little to
no discrimination and random structure.



o EREGRHITALL: il —LEHR. W AREIA AR EIZR

smiling man

—
E |
man

with glasses without glasses without glasses

man .
WO woman wilh glasses



