# 一、近期工作:

- 1. 参加 CCFADL, 《城市智能与计算》;
- 2. 翻译工作;
- 3. 对 DCGAN、f-GAN、WGAN 学习;
- 4. 对心电图项目的思考;

## 二、下一步计划:

1. 选择一个合适的 GAN 模型,应用在项目中;

| 论文                              | 出版社        | 功能                                     | 训练数据     | 模型结构                                      | 损失函数                                                                                                                                                                                         |
|---------------------------------|------------|----------------------------------------|----------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GAN                             | NIPS 2014  | 通过对抗训<br>练生成真实<br>图像                   |          | 一个生成器 G 、<br>一个判别器 D                      | L_GAN(G,D)                                                                                                                                                                                   |
| CycleGAN                        | ICCV 2017  | 实现交叉图<br>像领域之间<br>的映射关系                | Unpaired | F(G(X))=X<br>两个生成器、<br>两个判别器              | L_GAN(G;D <sub>Y</sub> ;X; Y)<br>+ L_GAN(F;D <sub>X</sub> ; Y;X)<br>+ L_cyc(G; F)                                                                                                            |
| DiscoGAN                        | ICML 2017  | 实现交叉图<br>像领域之间<br>的映射关系                | Unpaired | F(G(X))=X<br>两个生成器、<br>两个判别器              | L <sub>G</sub> = L <sub>GA+</sub> L <sub>GB</sub><br>=L <sub>GANB+</sub> L <sub>CONSTA+</sub><br>L <sub>GANA+</sub> L <sub>CONSTB</sub><br>L <sub>D</sub> = L <sub>DA+</sub> L <sub>DB</sub> |
| Image-to-<br>Image with<br>cGAN | ECCV 2016  | 用 cGAN 完成图像到图像的映射                      | paired   | 在生成器中,<br>用 U-net 结构代替<br>encoder-decoder | $G^*=$ arg minGmaxD $L_{CGAN}(G;D)+\lambda L_{L1}(G)$                                                                                                                                        |
| f-GAN                           | NIPS 2016  | 衡量两种分<br>布之间的相<br>似度                   |          |                                           |                                                                                                                                                                                              |
| WGAN                            | arXiv 2017 | 用'推土<br>机'衡量两<br>种分布的距<br>离            |          |                                           |                                                                                                                                                                                              |
| DCGAN                           | ICLR 2016  | 将生成器和<br>判别器的网<br>络结积网络<br>度卷积网络<br>替换 |          | 用深度卷积网络替<br>代生成器和判别器<br>的网络模型             |                                                                                                                                                                                              |

- 2. 完成实验,分析结果;
- 3. 构思 paper;

## 三、DCGAN(ICLR 2016)

- 1. 主要工作:
- 将生成器与判别器中的网络用深度卷积网络代替,并为了能够稳定训练 GAN, 对网络做出了一些修改;
- 用训练好的判别器对 CIFAR 10 数据进行分类,取得了不错的效果;
- 对 GAN 的学习效果进行了可视化;
- 生成器具有有趣的向量运算性质,可以对生成样本的许多语义进行简单的操作;
- 2. 稳定网络的训练
- 其中池化层用 strided convolutions (判别器) and fractional-strided

convolutions (生成器)替代;

- 在生成器和判别器中分别使用 批正则化处理(Batch Normalization);
- 删除了最后全连接层的隐藏层;
- 生成器中除了输出层使用 Tanh 外, 其他各层都使用 ReLU 激活函数;
- 判别器的所有层使用 LeakyReLU 激活函数;

### 3. 结构模型



Figure 1: DCGAN generator used for LSUN scene modeling. A 100 dimensional uniform distribution Z is projected to a small spatial extent convolutional representation with many feature maps. A series of four fractionally-strided convolutions (in some recent papers, these are wrongly called deconvolutions) then convert this high level representation into a  $64 \times 64$  pixel image. Notably, no fully connected or pooling layers are used.

#### 4. 实验效果

基于三种数据集: Large-scale Scene Understanding (LSUN)、 Imagenet-1k、a newly assembled Faces dataset

### 1次 epoch 结果



Figure 2: Generated bedrooms after one training pass through the dataset. Theoretically, the model could learn to memorize training examples, but this is experimentally unlikely as we train with a small learning rate and minibatch SGD. We are aware of no prior empirical evidence demonstrating memorization with SGD and a small learning rate.

## 5次 epochs 结果



Figure 3: Generated bedrooms after five epochs of training. There appears to be evidence of visual under-fitting via repeated noise textures across multiple samples such as the base boards of some of the beds

使用 DCGAN 的训练网络分类 CIFAR-10 和 SVHN 数据的结果

Table 1: CIFAR-10 classification results using our pre-trained model. Our DCGAN is not pre-trained on CIFAR-10, but on Imagenet-1k, and the features are used to classify CIFAR-10 images.

| Model                      | Accuracy | Accuracy (400 per class) | max # of features units |
|----------------------------|----------|--------------------------|-------------------------|
| 1 Layer K-means            | 80.6%    | 63.7% (±0.7%)            | 4800                    |
| 3 Layer K-means Learned RF | 82.0%    | 70.7% (±0.7%)            | 3200                    |
| View Invariant K-means     | 81.9%    | 72.6% (±0.7%)            | 6400                    |
| Exemplar CNN               | 84.3%    | 77.4% (±0.2%)            | 1024                    |
| DCGAN (ours) + L2-SVM      | 82.8%    | 73.8% (±0.4%)            | 512                     |

Table 2: SVHN classification with 1000 labels

| Model                                     | error rate          |
|-------------------------------------------|---------------------|
| KNN                                       | 77.93%              |
| TSVM                                      | 66.55%              |
| M1+KNN                                    | 65.63%              |
| M1+TSVM                                   | 54.33%              |
| M1+M2                                     | 36.02%              |
| SWWAE without dropout                     | 27.83%              |
| SWWAE with dropout                        | 23.56%              |
| DCGAN (ours) + L2-SVM                     | 22.48%              |
| Supervised CNN with the same architecture | 28.87% (validation) |

### 5. 网络内部结构的可视化

● 为了了解网络是否真正的学习到图片的特征,作者对隐藏空间进行了可视化;下图为随机改变 Z 中的 9 个点,图片发生的变化效果。



● 判别器的可视化,检验 DCGAN 是否也可以学习到感兴趣的特征



Random filters

**Trained filters** 

Figure 5: On the right, guided backpropagation visualizations of maximal axis-aligned responses for the first 6 learned convolutional features from the last convolution layer in the discriminator. Notice a significant minority of features respond to beds - the central object in the LSUN bedrooms dataset. On the left is a random filter baseline. Comparing to the previous responses there is little to no discrimination and random structure.

● 生成器的可视化: "忘记"一些目标、对人脸图片样本的矢量运算

