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Abstract—In big data environment, recommender systems are 

facing many problems, such as poor extendibility, data 

sparseness and low efficiency. In this paper, a new 

collaborative filtering parallel algorithm named NALS-WR is 

designed in the Linux clusters by using Spark to solve these 

problems, especially aiming at the bottleneck of processing 

speed and resource allocation of traditional matrix 

factorization algorithm in massive data information. Our 

experiments were on the real movielens datasets. Compared 

with other such recommendation system based on ALS-WR or 

sigular value decomposition (SVD), the accuracy rate was 

improved. The running efficiency was much higher than the 

ALS-WR in Hadoop, and it is also faster than SVD. The bigger 

the scale of data, the more efficient it is. This algorithm can 

improve the execution efficiency of collaborative filtering 

recommendation algorithm at large data scale, which solves 

the problem of over-high time of matrix factorization 

recommendation algorithm. Our experiments indicated that 

our NALS-WR algorithm was better, whether in extendibility, 

sparseness resistance or efficiency in the implementation. 

Keywords-component; Recommender systems; Data sparsity 

problem; Collaborative filtering; Alternating-least-squares with 

Weighted-λ-regularization (ALS-WR). 

I. INTRODUCTION 

At present, the most widely used algorithm in 
recommendation system is based on collaborative filtering 
recommendation algorithm [1]. Traditional collaborative 
filtering techniques are often categorized into two categories 
[2, 4]: model-based methods (e.g. latent factor model) [2, 5] 
and memory-based methods (e.g. nearest neighborhood) [2, 
5, 6]. In general, model-based methods are known to 
generate more accurate recommendation results, such as the 
singular value decomposition (SVD) [7] and alternating-
least-squares (ALS) [8]. But with the number of users and 
items in ecommerce services growing quickly, the sparseness 
of user-to-item rating data deteriorates the rating prediction 
accuracy of traditional collaborative filtering techniques [2, 3, 
4]. ALS is not scalable to large-scale data set in the paper 
[23]. Then ALS is improved (ALS-WR), which is very 
simple and has good expansibility for large datasets [8]. 
While the nearest neighbor method is used to predict score, 
which can solve the problem of synonyms to some extent. 
But the result of feature matrix cannot be directly used for 
grading, because the scores of most rating matrix are filled 
before the decomposition [9]. A distributed matrix 

factorization algorithm in the papers is proposed [10, 11], 
which can manage the parallel computation of matrix 
factorization. However, the MapReduce framework in 
iterations of computing nodes used in these papers can 
generate many operations in reading files, which affects the 
efficiency of the algorithm. Compared with the previous 
results, our contributions are summarized as follows:  

Firstly, we proposed a method of normalized processing 
in ALS-WR to solve data sparseness. We imposed bounds on 
ALS-WR algorithm. The improved ALS-WR algorithm 
(NALS-WR) and ALS-WR, SVD algorithm were compared. 
The experimental results showed that the NALS-WR 
algorithm outperformed the ALS-WR and SVD algorithms 
under the problems of various data sparseness and the 
recommended results are a little more accurate.  

 Secondly, we combined NALS-WR with the Spark 
parallel computing framework, which specializes in memory 
computation and iterative computation. These solved the 
problem of low computational efficiency of general matrix 
factorization recommendation algorithm in big data 
environment. 

The remainder of the paper was organized as follows. 
Section 2 briefly introduced Spark platform and ALS-WR 
and SVD algorithm. Section 3 presented the detailed process 
of NALS-WR algorithm, and explained the parallel 
architecture of our NALS-WR. Section 4 experimentally 
evaluated Spark-based NALS-WR and evaluate the results. 
Section 5 summarized our contributions and gave future 
work.  

II. PRELIMINARY 

In this section, we will briefly review our experiment 
platform, which is Apache Spark, then the matrix 
factorization (MF) (the most popular collaborative filtering 
technique), the ALS-WR and SVD algorithm. 

A. Apache Spark 

Apache Spark is an open source cluster computing 
system that aims to make data analytics fast - both fast to run 
and fast to write. Spark can outperform Hadoop by 10x in 
iterative machine learning jobs, and can be used to 
interactively query a 39 GB dataset with sub-second 
response time [12].  

Spark has proposed a Resilient Distributed Dataset 
(RDD). The essence of RDD is the definition of parallel data 
containers. Different data set format corresponds to different 



types of RDD. If a RDD fragment is lost, Spark can 
reconstruct it from the log information, So RDD is resilient; 
Spark can operate the local dataset in a way that manipulates 
the local set, So RDD is also distributed. In addition. RDD 
can be cached in memory, it can be read directly from 
memory in the subsequent calculation process while 
eliminating the need for a large number of disk access costs, 
it is befitting for the iterative calculation in the matrix 
factorization algorithm. Each Spark application has its own 
executor process, the life cycle of executor and the entire life 
cycle of application are the same, and it maintains multiple 
threads inside in order to perform parallel the task assigned 
to it. This mode of operation is contributed to the separation 
of resources and scheduling isolation between different 
applications. The basic workflow of our experiment platform 
is shown in Figure 1. 
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Figure 1. The workflow of our experiment platform 

B. Basic definitions 

In this paper, the matrix is indicated in italic capital 
letters (e.g. P) and the scalar is denoted by lowercase letters 
(e.g. i, j). Given a matrix P, Pij represents a of its elements, 
Pi. represents the ith row of the matrix P, P.j represents the jth 

column of the matrix P, , and PT represents the transpose of 

the matrix P. P-1 represents the inverse of the matrix P.The 
matrix P given in this paper represents a rating matrix with 
m users and n items, and the matrices U and V respectively 
represent the characteristic matrix of the users and the 
characteristic matrix of the recommendation objects. 

C. Matrix Factorization 

The goal of matrix factorization is to find latent models 
of users and items on a shared latent space in which the 
strengths of user-item relationships (i.e., rating by a user on 
an item) are computed by inner products [2, 5]. In matrix 
factorization, latent models of user i and item j are denoted 
as k-dimensional models, and the rating of user i on item j is 
approximated by the inner-product of corresponding latent 
models of item j and user i. The widespread way of training 
latent models is to reduce a loss function L. It consists of 

sum-of-squared-error terms between the predicted ratings 
and the actual ratings. In order to avoid the over-fitting 
problem, they also add some regularization terms. 

D. Sigular Value Decomposition 

One of the most favorite collaborative filtering 
recommendation algorithm based on matrix factorization is 
the singular value decomposition. The user rating matrix is 
decomposed into a user feature vector matrix and a project 
feature vector matrix. In order to make recommendations 
from these characteristics we extract some essential features 
with using the singular values of the initial rating matrix. 
SVD is a common method of matrix dimension 
simplification, which decomposes a matrix P of m rows and 
n columns into three matrices [15]. The formula discussed 
above is as follows: 

  * * TP U C V .         (1) 

Where U is an orthogonal matrix of m * m, C is an 
orthogonal matrix of m * n, whose diagonal elements are 
descending in descending order, which is diagonal matrix (c1, 
c2, ......, cn), known as the singular value. Its non-diagonal 
elements are all 0. V is an orthogonal matrix of n * n. 
Through the decomposition of this matrix, a simplified 
matrix can be found approximately, which is the diagonal 
matrix C, and retain its K largest singular values to form a k-
dimensional space. Thus, a new diagonal matrix Ck is 
obtained, and the dimensions of matrices U, C, and V 
respectively become m*k, k*k, k*n. Then the approximate 
matrix we get is: 

                    * * ,  T
k k k k kP U C V P P  .                    (2) 

The singular value decomposition can produce one of 
the matrices with all ranks equal to k, which is most 
approximate to the matrix P. 

E. ALS-WR 

Another collaborative filtering recommendation 
algorithm based on matrix factorization is alternating-least-
squares with weighted-λ-regularization. ALS-WR is the 
abbreviation of least squares alternating. Different from that 
traditional recommendation algorithm based on matrix 
factorization which uses the SVD method to decompose a 
matrix P. Here, it is desirable to find a low rank matrix X to 
approximate the matrix P, which is as follows: 

* *,  ,  T m d n dX UV U C V C   .                  (3) 

Where d denotes the number of features, and generally d 
<< r. r denotes the rank of matrix P, and r is less than or 
equal to the minimum value of m or n. In order to find the 
minimum-rank matrix X and Y as close as possible to P, we 
need to minimize the square error loss function. The loss 
function needs to add a regularization term to avoid the over-
fitting problem [8]. 



III. NALS-WR 

Since SVD is decomposed into three matrices, that shares 
many variables and can only be applied to a small-scale or 
large-capacity shared memory solution, so it is difficult to 
parallelize. On the contrary, ALS-WR can be extended to 
compute more on large-scale clusters, and used to solve 
distributed parallel computing with a burst of speed. We use 
Pi. to represent the vector composed by the movie score 
which has been evaluated by the user i, and Vui represents the 
feature matrix composed by the feature vector of the movie 
that the user i has evaluated. Supposing that nui represents the 
number of movies that user i has reviewed. P.j denotes the 
vector composed by ratings of the users who reviewed the 
movie j, and Umj denotes the characteristic matrix composed 
by the eigenvectors of the user who has evaluated the movie 
j. Supposing that nmj denote the number of users who have 
commented on the movie j. Since we are attempting to find 
two low-dimensional matrices to approximate the matrix P 
(m * n), the common loss function is: 

                    2
. .( , ) ( )i j i jij

L U V P U V   .                (4) 

In order to prevent over-fitting, we add the regularization 
term to (4). Then (4) can be rewritten as below: 

2 2
2

. . . .( , ) ( ) ( )i j i j i jij F F
L U V P U V U V          (5) 

Then we fix Vj. , derive Ui. , and make the derivative be 
equal to 0, this can be expressed as follows:                                                                                                                              
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We obtain the following formula for solving Ui. : 

1
. . ( )i i ui ui ui uiU PV V V n I   ,   [1, ]i m .           (7) 

Similarly, we fixed Ui. , and obtain (8) for solving Vj. : 
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Use iterative method to get U and V, then we normalize 
them as follows: 
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The parameters s and t are taken the appropriate value, 
then the results will be mapped to a corresponding interval. 
In the rating process, if the score is mapped to the interval 
[0.5, 5.0], we can take s = 4.5 and t = 0.5. By using the 
normalization operation, the weakness of original ALS-WR 
is overcome. Experiments will show that the boundary 
introduced will make the results more accurate. The specific 
process of our NALS-WR is as follows: 

1) First, the matrix V is initialized with a Gaussian 
random number of mean zero and a deviation of 0.01.  
2) Then we obtain U by the objective function (7). 
3) Normalize the U obtained above. 
4) Similarly, use function (8) to update V. Continue to 

iterate, and normalize each iteration. 
5) If RMSE value calculated by the algorithm converges 

or the number of iterations is enough, we terminate the 
iteration. 

6) According to X = UVT, we get the matrix X. 
7) Normalize the X. 
The key of NALS-WR is to update U and V iteratively 

by using formulas (7) and (8), which are invoked each time 
that leads to only the row values of matrix U and V are 
calculated and updated. So the matrix U and V can be 
divided into a number of some sub-matrixes which are of 
equal column length. So the NALS-WR can complete the 
parallel operation. The following experiments show that, our 
NALS-WR is superior to SVD and ALS-WR in 
recommending performance. 

IV. EXPERIMENT AND EVALUATION 

A. Experimental Environment and Dataset 

We use the machines in our lab, which are all configured 
to 4G memory, 4-core CPU. The deployment of 5-node 
Spark cluster and Hadoop cluster are ready. We use Hadoop 
Distributed File System to store experimental data, and use 
MovieLens [13, 14] as the experimental datasets. We 
choose MovieLens-1m, 10m, and 20m to test. Among that 
MovieLens-20m contains 20000263 ratings, 27,278 movies 
and 138,493 users. User numbers are form 1 to 138493, film 
numbers are from 1 to 131262. According to statistics, a 
single user ultimately participate in the 9254 film ratings. 



While only 26,744 films were actually rated, the score 
density is 0.54%.   

B. The Evaluation Criteria of Experiment 

In our paper, the RMSE is used as the evaluation 
criterion [2]. The RMSE measures accuracy of prediction. 
Assuming that one of the rating vectors predicted is pi, and 
the corresponding actual user rating set is ri. Number of 
rating is N, then the RMSE is expressed as:  
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             (12) 

C. Experimental Results and Analysis 

In this section, we compare the performance of NALS-
WR with other such CF algorithms. The algorithms 
involved in the comparison are SVD, NALS-WR and ALS-
WR. Figure 2 shows the performance of NALS-WR and 
ALS-WR when RMSE is used as the performance 
evaluation index in MovieLens-20m. Each algorithm is 
trained on the training set, and RMSE is tested on the test 
set. The number of iterations is 18 times. The vertical axis 
represents the RMSE. The abscissa represents the numbers 
of features of the feature matrix. Two algorithms both 
achieve the minimum value when the number of features is 
8. However, the RMSE of NALS-WR is always lower than 
that of ALS-WR, which shows that the performance of 
NALS-WR is better than that of ALS-WR. The 

experimental data are as follows： 

 
Figure 2: RMSE Comparison of NALS-WR and ALS-WR algorithm 

Similar to the above, we compare the performance 
between NALS-WR and another similar matrix 
decomposition algorithm ( SVD). The RMSE of NALS-WR 
is the lowest of all, which is 0.796586 when the number of 
features is 8. The RMSE of NALS-WR is all lower than that 
of SVD. Experiments show that the performance of NALS-
WR is also superior to SVD. The experimental data are as 
follows in figure 3: 

 
Figure 3: RMSE Comparison of NALS-WR and SVD algorithm 

We use MovieLens-1m, 10m and 20m to prove the 
processing speed of NALS-WR. The evaluation index is 
runtime (ms). SVD is stand-alone and serial, there is no 
communication overhead of multiple nodes. In the case of 
less data, SVD is faster. NALS-WR is based on memory, 
and parallel distributed computing. There is communication 
overhead of multiple nodes. So in the case of less data, 
NALS-WR may be more time-consuming than the SVD. 
ALS-WR is based on Hadoop which uses Mapreduce to 
process data, and MapReduce in each execution must read 
data from the disk. After the completion, the data will be 
stored to disk. The iterative data on many occasions will 

consume a lot of time, which above is as shown in TableⅠ. 

As the amount of data increases, the advantage of NALS-

WR appears. The experimental data is shown in Tables Ⅱ 

and Ⅲ. In a large amount of data, the speed of NALS-WR 

algorithm will be far more than the single-node SVD and 
disk-based ALS-WR algorithm. Therefore, NALS-WR can 
improve the efficiency of collaborative filtering 
recommendation system at large data scale, and solve the 
problem of time cost in matrix factorization 
recommendation algorithm. 

Figure 4 shows the efficiency evaluation of NALS-WR, 
ALS-WR and SVD algorithm in MovieLens-20m. The 
horizontal axis represents the number of features of the 
feature matrix. The vertical axis represents the runtime (ms) 
value. Since the ALS-WR operation under Hadoop uses 
Mapreduce to process data, MapReduce reads data from 
disk every time when it is executed. After the calculation, 
the data is stored on the disk. The constant iteration will 
consume a lot of input and output. Spark is based on 
memory. So when the number of iterations is 18, the 
runtime of Spark-based parallel algorithm NALS-WR is 
much shorter than that of ALS-WR, also shorter than that of 
SVD serial operation. The runtime of NALS-WR linearly 
increase with the augment of the number of features. It 
shows that execution efficiency can bring the highest 
speedup ratio.  



 
Figure 4: Running time of three algorithms when iterations is confirmed 

V. SUMMARY 

This paper proposed a new parallel algorithm based on 
matrix factorization, and analyzed its extendibility, anti-
sparseness and efficiency of implementation. Our 
experiments indicated that our NALS-WR algorithm was 
better, whether in extendibility, sparseness resistance or 
efficiency. The bigger the scale of data, the more efficient it 
is. NALS-WR can improve the execution efficiency of 
collaborative filtering recommendation algorithm at large 
data scale, and solves the problem of over-high time in 
matrix factorization recommendation system. Because we 
can use Spark to do real-time processing (Hadoop can't do 
this). We also provide a transition from batch to real-time 
processing. In future work, we will combine with other 
algorithms to statistically improve RMSE and real - time. 
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TABLE I.  RUNNING TIME OF THREE ALGORITHMS WHEN ITERATIONS IS CONFIRMED IN MOVIELENS-1M 

Number of features 2 5 8 11 14 17 

Runtime (ms) of NALS-WR (Spark) 18000 19640 20176 20203 21691 22719 

Runtime (ms) of SVD 5034 6563 8382 10379 12191 14146 

Runtime (ms) of ALS-WR (Hadoop) 474548 482602 485783 486582 487137 491830 

TABLE II.  RUNNING TIME OF THREE ALGORITHMS WHEN ITERATIONS IS CONFIRMED IN MOVIELENS-10M 

Number of features 2 5 8 11 14 17 

Runtime (ms) of NALS-WR (Spark) 46161 55467 73185 75082 83838 99143 

Runtime (ms) of SVD 50416 70196 88636 107783 127000 146134 

Runtime (ms) of ALS-WR (Hadoop) 619625 623885 626749 639887 660833 693666 

TABLE III.  RUNNING TIME OF THREE ALGORITHMS WHEN ITERATIONS IS CONFIRMED IN MOVIELENS-20M 

Number of features 2 5 8 11 14 17 

Runtime (ms) of NALS-WR (Spark) 72000 90000 102000 126000 150000 168000 

Runtime (ms) of SVD 101889 140637 179521 217848 256726 295984 

Runtime (ms) of ALS-WR (Hadoop) 751387 769453 781549 800101 865819 937248  

http://grouplens.org/datasets/movielens/

