
Improving Matrix Factorization Recommendations for Problems in Big Data

Xiaohan Tu
College of Computer Science and

Electronic Engineering

Hunan University

Changsha 410082, China

tutu16103@hnu.edu.cn

Siping Liu
College of Computer Science and

Electronic Engineering

Hunan University

Changsha 410082, China

liusiping@hnu.edu.cn

Renfa Li
College of Computer Science and

Electronic Engineering

Hunan University

Changsha 410082, China

lirenfa@hnu.edu.cn

Abstract—In big data environment, recommender systems are

facing many problems, such as poor extendibility, data

sparseness and low efficiency. In this paper, a new

collaborative filtering parallel algorithm named NALS-WR is

designed in the Linux clusters by using Spark to solve these

problems, especially aiming at the bottleneck of processing

speed and resource allocation of traditional matrix

factorization algorithm in massive data information. Our

experiments were on the real movielens datasets. Compared

with other such recommendation system based on ALS-WR or

sigular value decomposition (SVD), the accuracy rate was

improved. The running efficiency was much higher than the

ALS-WR in Hadoop, and it is also faster than SVD. The bigger

the scale of data, the more efficient it is. This algorithm can

improve the execution efficiency of collaborative filtering

recommendation algorithm at large data scale, which solves

the problem of over-high time of matrix factorization

recommendation algorithm. Our experiments indicated that

our NALS-WR algorithm was better, whether in extendibility,

sparseness resistance or efficiency in the implementation.

Keywords-component; Recommender systems; Data sparsity

problem; Collaborative filtering; Alternating-least-squares with

Weighted-λ-regularization (ALS-WR).

I. INTRODUCTION

At present, the most widely used algorithm in
recommendation system is based on collaborative filtering
recommendation algorithm [1]. Traditional collaborative
filtering techniques are often categorized into two categories
[2, 4]: model-based methods (e.g. latent factor model) [2, 5]
and memory-based methods (e.g. nearest neighborhood) [2,
5, 6]. In general, model-based methods are known to
generate more accurate recommendation results, such as the
singular value decomposition (SVD) [7] and alternating-
least-squares (ALS) [8]. But with the number of users and
items in ecommerce services growing quickly, the sparseness
of user-to-item rating data deteriorates the rating prediction
accuracy of traditional collaborative filtering techniques [2, 3,
4]. ALS is not scalable to large-scale data set in the paper
[23]. Then ALS is improved (ALS-WR), which is very
simple and has good expansibility for large datasets [8].
While the nearest neighbor method is used to predict score,
which can solve the problem of synonyms to some extent.
But the result of feature matrix cannot be directly used for
grading, because the scores of most rating matrix are filled
before the decomposition [9]. A distributed matrix

factorization algorithm in the papers is proposed [10, 11],
which can manage the parallel computation of matrix
factorization. However, the MapReduce framework in
iterations of computing nodes used in these papers can
generate many operations in reading files, which affects the
efficiency of the algorithm. Compared with the previous
results, our contributions are summarized as follows:

Firstly, we proposed a method of normalized processing
in ALS-WR to solve data sparseness. We imposed bounds on
ALS-WR algorithm. The improved ALS-WR algorithm
(NALS-WR) and ALS-WR, SVD algorithm were compared.
The experimental results showed that the NALS-WR
algorithm outperformed the ALS-WR and SVD algorithms
under the problems of various data sparseness and the
recommended results are a little more accurate.

 Secondly, we combined NALS-WR with the Spark
parallel computing framework, which specializes in memory
computation and iterative computation. These solved the
problem of low computational efficiency of general matrix
factorization recommendation algorithm in big data
environment.

The remainder of the paper was organized as follows.
Section 2 briefly introduced Spark platform and ALS-WR
and SVD algorithm. Section 3 presented the detailed process
of NALS-WR algorithm, and explained the parallel
architecture of our NALS-WR. Section 4 experimentally
evaluated Spark-based NALS-WR and evaluate the results.
Section 5 summarized our contributions and gave future
work.

II. PRELIMINARY

In this section, we will briefly review our experiment
platform, which is Apache Spark, then the matrix
factorization (MF) (the most popular collaborative filtering
technique), the ALS-WR and SVD algorithm.

A. Apache Spark

Apache Spark is an open source cluster computing
system that aims to make data analytics fast - both fast to run
and fast to write. Spark can outperform Hadoop by 10x in
iterative machine learning jobs, and can be used to
interactively query a 39 GB dataset with sub-second
response time [12].

Spark has proposed a Resilient Distributed Dataset
(RDD). The essence of RDD is the definition of parallel data
containers. Different data set format corresponds to different

types of RDD. If a RDD fragment is lost, Spark can
reconstruct it from the log information, So RDD is resilient;
Spark can operate the local dataset in a way that manipulates
the local set, So RDD is also distributed. In addition. RDD
can be cached in memory, it can be read directly from
memory in the subsequent calculation process while
eliminating the need for a large number of disk access costs,
it is befitting for the iterative calculation in the matrix
factorization algorithm. Each Spark application has its own
executor process, the life cycle of executor and the entire life
cycle of application are the same, and it maintains multiple
threads inside in order to perform parallel the task assigned
to it. This mode of operation is contributed to the separation
of resources and scheduling isolation between different
applications. The basic workflow of our experiment platform
is shown in Figure 1.

Driver Program

Master
(Spark Standalone)

Worker1

SparkContext

Executor

Task Task

Cache

Worker4

Executor

Task Task

Cache

Two notes

are omitted

Figure 1. The workflow of our experiment platform

B. Basic definitions

In this paper, the matrix is indicated in italic capital
letters (e.g. P) and the scalar is denoted by lowercase letters
(e.g. i, j). Given a matrix P, Pij represents a of its elements,
Pi. represents the ith row of the matrix P, P.j represents the jth

column of the matrix P, , and PT represents the transpose of

the matrix P. P-1 represents the inverse of the matrix P.The
matrix P given in this paper represents a rating matrix with
m users and n items, and the matrices U and V respectively
represent the characteristic matrix of the users and the
characteristic matrix of the recommendation objects.

C. Matrix Factorization

The goal of matrix factorization is to find latent models
of users and items on a shared latent space in which the
strengths of user-item relationships (i.e., rating by a user on
an item) are computed by inner products [2, 5]. In matrix
factorization, latent models of user i and item j are denoted
as k-dimensional models, and the rating of user i on item j is
approximated by the inner-product of corresponding latent
models of item j and user i. The widespread way of training
latent models is to reduce a loss function L. It consists of

sum-of-squared-error terms between the predicted ratings
and the actual ratings. In order to avoid the over-fitting
problem, they also add some regularization terms.

D. Sigular Value Decomposition

One of the most favorite collaborative filtering
recommendation algorithm based on matrix factorization is
the singular value decomposition. The user rating matrix is
decomposed into a user feature vector matrix and a project
feature vector matrix. In order to make recommendations
from these characteristics we extract some essential features
with using the singular values of the initial rating matrix.
SVD is a common method of matrix dimension
simplification, which decomposes a matrix P of m rows and
n columns into three matrices [15]. The formula discussed
above is as follows:

 * * TP U C V . (1)

Where U is an orthogonal matrix of m * m, C is an
orthogonal matrix of m * n, whose diagonal elements are
descending in descending order, which is diagonal matrix (c1,
c2,, cn), known as the singular value. Its non-diagonal
elements are all 0. V is an orthogonal matrix of n * n.
Through the decomposition of this matrix, a simplified
matrix can be found approximately, which is the diagonal
matrix C, and retain its K largest singular values to form a k-
dimensional space. Thus, a new diagonal matrix Ck is
obtained, and the dimensions of matrices U, C, and V
respectively become m*k, k*k, k*n. Then the approximate
matrix we get is:

 * * , T
k k k k kP U C V P P . (2)

The singular value decomposition can produce one of
the matrices with all ranks equal to k, which is most
approximate to the matrix P.

E. ALS-WR

Another collaborative filtering recommendation
algorithm based on matrix factorization is alternating-least-
squares with weighted-λ-regularization. ALS-WR is the
abbreviation of least squares alternating. Different from that
traditional recommendation algorithm based on matrix
factorization which uses the SVD method to decompose a
matrix P. Here, it is desirable to find a low rank matrix X to
approximate the matrix P, which is as follows:

* *, , T m d n dX UV U C V C . (3)

Where d denotes the number of features, and generally d
<< r. r denotes the rank of matrix P, and r is less than or
equal to the minimum value of m or n. In order to find the
minimum-rank matrix X and Y as close as possible to P, we
need to minimize the square error loss function. The loss
function needs to add a regularization term to avoid the over-
fitting problem [8].

III. NALS-WR

Since SVD is decomposed into three matrices, that shares
many variables and can only be applied to a small-scale or
large-capacity shared memory solution, so it is difficult to
parallelize. On the contrary, ALS-WR can be extended to
compute more on large-scale clusters, and used to solve
distributed parallel computing with a burst of speed. We use
Pi. to represent the vector composed by the movie score
which has been evaluated by the user i, and Vui represents the
feature matrix composed by the feature vector of the movie
that the user i has evaluated. Supposing that nui represents the
number of movies that user i has reviewed. P.j denotes the
vector composed by ratings of the users who reviewed the
movie j, and Umj denotes the characteristic matrix composed
by the eigenvectors of the user who has evaluated the movie
j. Supposing that nmj denote the number of users who have
commented on the movie j. Since we are attempting to find
two low-dimensional matrices to approximate the matrix P
(m * n), the common loss function is:

 2
. .(,) ()i j i jij

L U V P U V . (4)

In order to prevent over-fitting, we add the regularization
term to (4). Then (4) can be rewritten as below:

2 2
2

. . . .(,) () ()i j i j i jij F F
L U V P U V U V (5)

Then we fix Vj. , derive Ui. , and make the derivative be
equal to 0, this can be expressed as follows:

.

(,)
0

i

L U V

U

. (6)

We obtain the following formula for solving Ui. :

1
. . ()i i ui ui ui uiU PV V V n I , [1,]i m . (7)

Similarly, we fixed Ui. , and obtain (8) for solving Vj. :

1
. . ()T

j j mj mj mj mjV P U U U n I , [1,]j n . (8)

Use iterative method to get U and V, then we normalize
them as follows:

1.
. min

1.
max . min

.

 ,

,

(())

() (())

 [

 * ,

i ui
i ui ui ui ui

ui ui ui

i ui
i ui ui ui ui

ui ui ui

i

P V
P V V V n I

V V n I

P V
P V V V n I

V V n I

A
U s t

A

B

i

B

1,].m

 (9)

min

m

. 1
.

.

ax mi
1

.

.

n

 () ,

() () ,

*s t,

()

()

T
j mj T

j mj mj mj mj

mj mj mj

T
j mj T

j mj mj mj mj

mj mj mj

j

P U
P U U U n I

U U n I

P U
P U U U n I

U U n I

A

V

B

A

B

 [1,].j n

 (10)

 min

. . max . . min

(())
ˆ * .

() ()

i j i j

ij

i j i j

U V U V
p s t

U V U V

 (11)

The parameters s and t are taken the appropriate value,
then the results will be mapped to a corresponding interval.
In the rating process, if the score is mapped to the interval
[0.5, 5.0], we can take s = 4.5 and t = 0.5. By using the
normalization operation, the weakness of original ALS-WR
is overcome. Experiments will show that the boundary
introduced will make the results more accurate. The specific
process of our NALS-WR is as follows:

1) First, the matrix V is initialized with a Gaussian
random number of mean zero and a deviation of 0.01.
2) Then we obtain U by the objective function (7).
3) Normalize the U obtained above.
4) Similarly, use function (8) to update V. Continue to

iterate, and normalize each iteration.
5) If RMSE value calculated by the algorithm converges

or the number of iterations is enough, we terminate the
iteration.

6) According to X = UVT, we get the matrix X.
7) Normalize the X.
The key of NALS-WR is to update U and V iteratively

by using formulas (7) and (8), which are invoked each time
that leads to only the row values of matrix U and V are
calculated and updated. So the matrix U and V can be
divided into a number of some sub-matrixes which are of
equal column length. So the NALS-WR can complete the
parallel operation. The following experiments show that, our
NALS-WR is superior to SVD and ALS-WR in
recommending performance.

IV. EXPERIMENT AND EVALUATION

A. Experimental Environment and Dataset

We use the machines in our lab, which are all configured
to 4G memory, 4-core CPU. The deployment of 5-node
Spark cluster and Hadoop cluster are ready. We use Hadoop
Distributed File System to store experimental data, and use
MovieLens [13, 14] as the experimental datasets. We
choose MovieLens-1m, 10m, and 20m to test. Among that
MovieLens-20m contains 20000263 ratings, 27,278 movies
and 138,493 users. User numbers are form 1 to 138493, film
numbers are from 1 to 131262. According to statistics, a
single user ultimately participate in the 9254 film ratings.

While only 26,744 films were actually rated, the score
density is 0.54%.

B. The Evaluation Criteria of Experiment

In our paper, the RMSE is used as the evaluation
criterion [2]. The RMSE measures accuracy of prediction.
Assuming that one of the rating vectors predicted is pi, and
the corresponding actual user rating set is ri. Number of
rating is N, then the RMSE is expressed as:

2

i

1

()
N

i

i

p r

RMSE
N

 (12)

C. Experimental Results and Analysis

In this section, we compare the performance of NALS-
WR with other such CF algorithms. The algorithms
involved in the comparison are SVD, NALS-WR and ALS-
WR. Figure 2 shows the performance of NALS-WR and
ALS-WR when RMSE is used as the performance
evaluation index in MovieLens-20m. Each algorithm is
trained on the training set, and RMSE is tested on the test
set. The number of iterations is 18 times. The vertical axis
represents the RMSE. The abscissa represents the numbers
of features of the feature matrix. Two algorithms both
achieve the minimum value when the number of features is
8. However, the RMSE of NALS-WR is always lower than
that of ALS-WR, which shows that the performance of
NALS-WR is better than that of ALS-WR. The

experimental data are as follows：

Figure 2: RMSE Comparison of NALS-WR and ALS-WR algorithm

Similar to the above, we compare the performance
between NALS-WR and another similar matrix
decomposition algorithm (SVD). The RMSE of NALS-WR
is the lowest of all, which is 0.796586 when the number of
features is 8. The RMSE of NALS-WR is all lower than that
of SVD. Experiments show that the performance of NALS-
WR is also superior to SVD. The experimental data are as
follows in figure 3:

Figure 3: RMSE Comparison of NALS-WR and SVD algorithm

We use MovieLens-1m, 10m and 20m to prove the
processing speed of NALS-WR. The evaluation index is
runtime (ms). SVD is stand-alone and serial, there is no
communication overhead of multiple nodes. In the case of
less data, SVD is faster. NALS-WR is based on memory,
and parallel distributed computing. There is communication
overhead of multiple nodes. So in the case of less data,
NALS-WR may be more time-consuming than the SVD.
ALS-WR is based on Hadoop which uses Mapreduce to
process data, and MapReduce in each execution must read
data from the disk. After the completion, the data will be
stored to disk. The iterative data on many occasions will

consume a lot of time, which above is as shown in TableⅠ.

As the amount of data increases, the advantage of NALS-

WR appears. The experimental data is shown in Tables Ⅱ

and Ⅲ. In a large amount of data, the speed of NALS-WR

algorithm will be far more than the single-node SVD and
disk-based ALS-WR algorithm. Therefore, NALS-WR can
improve the efficiency of collaborative filtering
recommendation system at large data scale, and solve the
problem of time cost in matrix factorization
recommendation algorithm.

Figure 4 shows the efficiency evaluation of NALS-WR,
ALS-WR and SVD algorithm in MovieLens-20m. The
horizontal axis represents the number of features of the
feature matrix. The vertical axis represents the runtime (ms)
value. Since the ALS-WR operation under Hadoop uses
Mapreduce to process data, MapReduce reads data from
disk every time when it is executed. After the calculation,
the data is stored on the disk. The constant iteration will
consume a lot of input and output. Spark is based on
memory. So when the number of iterations is 18, the
runtime of Spark-based parallel algorithm NALS-WR is
much shorter than that of ALS-WR, also shorter than that of
SVD serial operation. The runtime of NALS-WR linearly
increase with the augment of the number of features. It
shows that execution efficiency can bring the highest
speedup ratio.

Figure 4: Running time of three algorithms when iterations is confirmed

V. SUMMARY

This paper proposed a new parallel algorithm based on
matrix factorization, and analyzed its extendibility, anti-
sparseness and efficiency of implementation. Our
experiments indicated that our NALS-WR algorithm was
better, whether in extendibility, sparseness resistance or
efficiency. The bigger the scale of data, the more efficient it
is. NALS-WR can improve the execution efficiency of
collaborative filtering recommendation algorithm at large
data scale, and solves the problem of over-high time in
matrix factorization recommendation system. Because we
can use Spark to do real-time processing (Hadoop can't do
this). We also provide a transition from batch to real-time
processing. In future work, we will combine with other
algorithms to statistically improve RMSE and real - time.

ACKNOWLEDGMENT

This paper was supported by the National Natural
Science Foundation of China (No: 61173036 and 61202289),
the Science and Technology Plan of Hunan Province (No.
2015GK3015) and The National High-Tech Research and
Development Plan of China under Grant
(No.2012AA01A301-01).

REFERENCES

[1] Koren, Yehuda. "Collaborative filtering with temporal dynamics."
Communications of the ACM 53.4 (2010): 89-97.

[2] Kim, D., Park, C., Oh, J., Lee, S., & Yu, H. "Convolutional matrix
factorization for document context-aware recommendation." Proceedings
of the 10th ACM Conference on Recommender Systems. ACM, 2016: 233-
240.

[3] Herlocker, J. L., Konstan, J. A., Terveen, L. G., & Riedl, J. T.
"Evaluating collaborative filtering recommender systems." ACM
Transactions on Information Systems (TOIS) 22.1 (2004): 5-53.

[4] Adomavicius, Gediminas, and Alexander Tuzhilin. "Toward the next
generation of recommender systems: A survey of the state-of-the-art and
possible extensions." IEEE transactions on knowledge and data
engineering17.6 (2005): 734-749.

[5] Koren, Yehuda. "Factorization meets the neighborhood: a multifaceted
collaborative filtering model." Proceedings of the 14th ACM SIGKDD
international conference on Knowledge discovery and data mining. ACM,
2008.

[6] Deshpande, Mukund, and George Karypis. "Item-based top-n
recommendation algorithms." ACM Transactions on Information Systems
(TOIS) 22.1 (2004): 143-177.

[7] Paterek, Arkadiusz. "Improving regularized singular value
decomposition for collaborative filtering." Proceedings of KDD cup and
workshop. Vol. 2007. 2007.

[8] Zhou, Y., Wilkinson, D., Schreiber, R., & Pan, R. "Large-scale parallel
collaborative filtering for the netflix prize." International Conference on
Algorithmic Applications in Management. Springer Berlin Heidelberg,
2008.

[9] Ko, S. Y., Hoque, I., Cho, B., & Gupta, I. "On Availability of
Intermediate Data in Cloud Computations." HotOS. 2009.

[10] Hu, Peng, and Wei Dai. "Enhancing fault tolerance based on Hadoop
cluster." International Journal of Database Theory and Application 7.1
(2014): 37-48.

[11] ZHU H. Fault tolerance for MapReduce in the cloud environment [D].
Shanghai: Shanghai Jiao Tong University, 2012

[12] Zaharia, M., Chowdhury, M., Franklin, M. J., Shenker, S., & Stoica, I.
"Spark: cluster computing with working sets." HotCloud10 (2010): 10-10.

[13] MovieLens: http://grouplens.org/datasets/movielens/

[14] Harper, F. Maxwell, and Joseph A. Konstan. "The movielens datasets:
History and context." ACM Transactions on Interactive Intelligent Systems
(TiiS) 5.4 (2016): 19.

[15] Koren, Yehuda. "Factor in the neighbors: Scalable and accurate
collaborative filtering." ACM Transactions on Knowledge Discovery from
Data (TKDD) 4.1 (2010): 1.

TABLE I. RUNNING TIME OF THREE ALGORITHMS WHEN ITERATIONS IS CONFIRMED IN MOVIELENS-1M

Number of features 2 5 8 11 14 17

Runtime (ms) of NALS-WR (Spark) 18000 19640 20176 20203 21691 22719

Runtime (ms) of SVD 5034 6563 8382 10379 12191 14146

Runtime (ms) of ALS-WR (Hadoop) 474548 482602 485783 486582 487137 491830

TABLE II. RUNNING TIME OF THREE ALGORITHMS WHEN ITERATIONS IS CONFIRMED IN MOVIELENS-10M

Number of features 2 5 8 11 14 17

Runtime (ms) of NALS-WR (Spark) 46161 55467 73185 75082 83838 99143

Runtime (ms) of SVD 50416 70196 88636 107783 127000 146134

Runtime (ms) of ALS-WR (Hadoop) 619625 623885 626749 639887 660833 693666

TABLE III. RUNNING TIME OF THREE ALGORITHMS WHEN ITERATIONS IS CONFIRMED IN MOVIELENS-20M

Number of features 2 5 8 11 14 17

Runtime (ms) of NALS-WR (Spark) 72000 90000 102000 126000 150000 168000

Runtime (ms) of SVD 101889 140637 179521 217848 256726 295984

Runtime (ms) of ALS-WR (Hadoop) 751387 769453 781549 800101 865819 937248

http://grouplens.org/datasets/movielens/

