
Future Generation Computer Systems 74 (2017) 1–11
Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Efficient task scheduling for budget constrained parallel applications
on heterogeneous cloud computing systems
Weihong Chen a,b, Guoqi Xie a,b,∗, Renfa Li a,b, Yang Bai a,b, Chunnian Fan a,c, Keqin Li a,d
a College of Information Science and Engineering, Hunan University, Changsha, Hunan 410008, China
b The National Supercomputing Center in Changsha, Changsha, Hunan 410008, China
c Nanjing University of Information Science and Technology, Nanjing, Jiangsu 410008, China
d Department of Computer Science, State University of New York, New Paltz, NY 12561, USA

h i g h l i g h t s

• We convert the budget constraint of an application into tasks using the budget level.
• We propose the MSLBL algorithm with low-time complexity.
• We validate that MSLBL performs better than existing algorithms under different conditions.
• We propose the algorithm called minimizing the schedule length using the budget level (MSLBL).
• MSLBL can generate less schedule lengths than existing algorithm under different conditions.

a r t i c l e i n f o

Article history:
Received 22 October 2016
Accepted 28 February 2017
Available online 5 April 2017

Keywords:
Budget constraint
Heterogeneous clouds
Parallel application
Schedule length

a b s t r a c t

As the cost-driven public cloud services emerge, budget constraint is one of the primary design issues
in large-scale scientific applications executed on heterogeneous cloud computing systems. Minimizing
the schedule length while satisfying the budget constraint of an application is one of the most important
quality of service requirements for cloud providers. A directed acyclic graph (DAG) can be used to describe
an application consisted of multiple tasks with precedence constrains. Previous DAG scheduling methods
tried to presuppose theminimumcost assignment for each task tominimize the schedule length of budget
constrained applications on heterogeneous cloud computing systems. However, our analysis revealed
that the preassignment of tasks with the minimum cost does not necessarily lead to the minimization
of the schedule length. In this study, we propose an efficient algorithm of minimizing the schedule length
using the budget level (MSLBL) to select processors for satisfying the budget constraint and minimizing
the schedule length of an application. Such problem is decomposed into two sub-problems, namely,
satisfying the budget constraint and minimizing the schedule length. The first sub-problem is solved by
transferring the budget constraint of the application to that of each task, and the second sub-problem is
solved by heuristically scheduling each task with low-time complexity. Experimental results on several
real parallel applications validate that the proposedMSLBL algorithm can obtain shorter schedule lengths
while satisfying the budget constraint of an application than existing methods in various situations.

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

1.1. Background

Today’s large-scale scientific applications, such as e-commerce,
automotive control, and traffic state predication, have drawn a

∗ Correspondence to: College of Computer Science and Electronic Engineering,
Hunan University, Changsha, Hunan, 410082, China.

E-mail addresses: paney@126.com (W. Chen), xgqman@hnu.edu.cn (G. Xie),
lirenfa@hnu.edu.cn (R. Li), by1990310@qq.com (Y. Bai), fcn@nuist.edu.cn (C. Fan),
lik@newpaltz.edu (K. Li).

http://dx.doi.org/10.1016/j.future.2017.03.008
0167-739X/© 2017 Elsevier B.V. All rights reserved.
great amount of demand for the design of high performance
computing systems [1]. Such applications comprised of many
interdependent modules are usually executed in heterogeneous
parallel and distributed environments. Computing grids have been
used by researchers from various areas of science to execute
complex scientific applications [2]. With the emergence of cloud
computing and rapid development of cloud infrastructures, more
and more scientific computing applications have been migrated to
the cloud, on which a pay-as-you-go paradigm is established and
on-demand computational services with difference performance
and quality of service (QoS) levels can be offered [3]. In this
computing model, users pay only for what they use. Accordingly,

http://dx.doi.org/10.1016/j.future.2017.03.008
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2017.03.008&domain=pdf
mailto:paney@126.com
mailto:xgqman@hnu.edu.cn
mailto:lirenfa@hnu.edu.cn
mailto:by1990310@qq.com
mailto:fcn@nuist.edu.cn
mailto:lik@newpaltz.edu
http://dx.doi.org/10.1016/j.future.2017.03.008


2 W. Chen et al. / Future Generation Computer Systems 74 (2017) 1–11
time and cost become two of the most important factors cared
by users. Typically, the execution speed of the powerful resource
is directly proportional to the unit price [4]. Thus, the trade-off
between time and cost is the key to DAG scheduling. In this paper,
we aim at researching the scheduling of the budget constrained
application such that its schedule length is minimized.

1.2. Motivation

The scheduling problem of minimizing the schedule length of
budget constrained parallel applications has become challenging.
In cloud computing systems, service providers and customers
are the two types of roles with conflicting requirements by
the server-level agreement (SLA) [5]. For service providers,
minimizing the schedule length of an application is one of the
most important concerns. For customers, the budget constraints
of an application is one of the most important QoS requirements.
Many studies have been conducted recently to minimize the
schedule length while satisfying budget constraints [6–13].
As heterogeneous systems scale up, distributed and parallel
applications with precedence-constrained tasks, i.e., large-scale
scientific workflows, are represented by directed acyclic graphs
(DAGs), in which the nodes represent the tasks and the edges
represent the communication messages between tasks [14,15].

The problem of minimizing the schedule length of a budget
constrained application with precedence-constrained tasks has
been solved recently in a number of studies [4,10]. However,
these studies focus on homogeneous cloud system only. The same
problem has been studied for heterogeneous cloud computing
systems based on the earliest finish time (EFT). Arabnejad et al. [11]
presented the heterogeneous budget constrained scheduling
(HBCS) algorithm by presupposing tasks with the minimum
execution cost to satisfy the budget constraint of the application,
then the spare budget of the application was used by prioritized
tasks in turn. Although a quantized measurement is used in HBCS,
its limitations still exist as follows.

(1) Prioritized tasks select processors with the highest worthi-
ness value by a series of calculations, which results in tasks with
higher priority having more chance to use the spare budget of the
application. It is unfairness for tasks with lower priority.

(2) Preassigning theminimum execution cost to each task is not
always effective with respect to schedule length minimization if
there is not enough budget for executing an application. The tasks
that have low priority and not enough budget available tend to
select the processor with the minimum execution cost, which will
lead to longer schedule length.

1.3. Our contributions

In this paper, we focus on the scheduling problem of budget
constrained applications on heterogeneous cloud computing
systems, and a fair scheduling algorithmwith low-time complexity
using the budget level is proposed. The objective is tominimize the
schedule length of applications under the budget constraint. The
contributions of this study are as follows:

(1) The problem of minimizing the schedule length of a
budget constrained parallel application in heterogeneous cloud
environments is decomposed into two sub-problems, namely,
satisfying the budget constraint and minimizing the schedule
length. We illustrate the proof of converting the budget constraint
of an application into budget constraints of tasks using the budget
level.

(2) The algorithm of minimizing the schedule length using the
budget level (MSLBL) is proposed, which minimizes the schedule
length of budget constrained parallel applications by preassigning
tasks with the budget level cost while not violating the precedence
constraints between tasks and budget constraint of the application.
It has high-performance and low-time complexity.

(3)Wedo extensively experimentswith both Fast Fourier trans-
form and Gaussian elimination parallel applications. Experimental
results validate that the proposed MSLBL algorithm can generated
less schedule lengths than the state-of-the-art algorithmunder dif-
ferent budget constrained and scale conditions.

The rest of this paper is organized as follows. Section 2
reviews related studies. Section 3 presents related models and
preliminaries. Section 4 analyzes the existing algorithm and
presents the MSLBL algorithm. Section 5 presents the verification
of the MSLBL algorithm. Section 6 concludes this study.

2. Related works

Many studies have investigated the DAG scheduling problem
in various computing environments. The QoS-aware scheduling
considers the optimization of parameters, such as time and cost,
using cloud computing to execute workflows. Hu et al. [14] formu-
lated the task scheduling on parallel processors as a DAG schedul-
ing problem, where a heuristic algorithm was proposed to min-
imize the schedule length (makespan) of a DAG for a bounded
number of processors. The author also proved that the optimal
makespan can be obtained and a lower bound on the minimum
makespan can be determined for a DAGwith arbitrary dependency
constraints. Heuristic algorithms arewidely accepted because DAG
scheduling is an NP-complete problem [15]. Scheduling problems
are extended to many forms of constraints and environment set-
tings [16–19]. For time-critical parallel applications, the IaaS Cloud
Partial Critical Paths (IC-PCP) method for deadline-constrained ap-
plications has been proposed on heterogeneous cloud environ-
ments [16]. In [20–22], an extensive study on the scheduling
algorithms of grid computing was presented toward performance
and makespan minimization. However, financial cost is another
important parameter in the cloud. For cost-critical parallel appli-
cations, cost-aware scheduling algorithms have been proposed for
minimizing execution cost or satisfying the budget constraint on
heterogeneous systems [1,23]. However, very few papers have tar-
geted heterogeneous cloud computing environment and designs
for minimizing the schedule length of budget constrained appli-
cations. In [24], a heuristic algorithm of deadline early tree was
presented. It minimized the cost of deadline constrained applica-
tions without considering the communication time between tasks.
In [4], Wu et al. proposed a critical-greedy (CG) algorithm to mini-
mize the end-to-end delay of budget constrained parallel applica-
tions. In this work, the CG algorithm defines a global budget level
(GBL) parameter and preassigns tasks with the budget-level ex-
ecution cost. However, this algorithm is for homogeneous cloud
environments, where the communication time between tasks is
assumed zero, which is not the practice on heterogeneous cloud
computing systems.

In addition to single QoS parameter optimization scheduling,
the scheduling problem becomes more challenging when two QoS
parameters (i.e., time and cost) are considered simultaneously
[12,25–27]. Workflow scheduling to satisfy multiple QoS param-
eters is an attractive area in cloud computing. Malawski et al. [13]
proposed DPDS, WA-DPDS, and SPSS algorithms for workflow en-
sembles on clouds to satisfy budget and deadline constraints,
but their aim was to maximize the number of user-prioritized
workflows. Arabnejad et al. [12] proposed a deadline-budget con-
strained scheduling algorithm (DBCS), which aimed to find a fea-
sible schedule within the budget and deadline constraints. In this
work, DBCS transfers the deadline and budget constraints of the
application to that of each task by defining the CL and DL of each
task. The obtained scheduling may or may not satisfy the deadline
constraintwhile satisfying the budget constraint of the application.



W. Chen et al. / Future Generation Computer Systems 74 (2017) 1–11 3
In fact, whether the deadline constraint of an application is satis-
fied or not can be judged by investigating the actual finish time of
the exit task in a schedule. On one hand, the scheduling problem
of the budget constrained parallel application can be transferred
into minimizing the schedule length of the budget constrained ap-
plication, then the obtained schedule is accepted only if its sched-
ule length is not larger than the deadline constraint of the applica-
tion. On the other hand, although the quantitativemeasure is used,
DBCS uses the common deadline span of an application for each
task, such that no guarantee to ensure that all tasks are completed
within the deadline constraint of the application. A comprehen-
sive survey on grid and cloud workflow scheduling was presented
in [28–30].

Among all of these previous works, we select an algorithm that
are closer to our context. In [11], the HBCS algorithm presupposes
tasks with minimum execution costs and assigns processors to
tasks based on parameter worthiness on heterogeneous systems
with the object of satisfying the budget constraint and minimizing
the schedule length of applications. As pointed out in Section 1.2,
HBCS can be further optimized to obtain the minimum schedule
length. In this study, the goal is to propose a fair scheduling al-
gorithm with low time complexity for minimizing the schedule
length of budget constrained parallel applications on heteroge-
neous cloud computing systems.

3. Problem definition

3.1. System model

As illustrated in Fig. 1, the system model for the scheduling
problem on cloud environments includes three layers: the task
graph, the resource graph, and the cloud infrastructure layers [4,
31]. The task graph layer comprises of tasks with precedence
constraints that users submit for executing complex applications.
The resources graph layer represents a network of virtual
machines (VMs), and the cloud infrastructure layer consists of
interconnected physical computer nodes. According to [7], task
placement is to find a placement of processors for executing a
task, which is similar to the processor allocation. Task scheduling
is to determine the placement and starting time of tasks. When
time dimension is added to a placement algorithm, the algorithm
is extended to a scheduling algorithm and is also regarded as a
3D placement algorithm. This study aims to provide a DAG task
scheduling service on a cloud computing system, including the
processor allocation and the determination of the start time of
tasks on processors.

The targeted computing platform is composed of a set
of heterogeneous processors that provide services of different
capabilities and costs [10]. Let P =


p1, p2, . . . , p|P|


as the

processor set, where |P| represents the size of set P . For any set X ,
this study uses |X | to denote its size. A parallel application running
on processors is represented by the DAG G = {N, E, C,W }. N
represents a set of nodes in G, and ni ∈ N represents a task
with different execution times on different processors. E is a set
of communication edges, and each edge ei,j ∈ E represents a
communication message (i.e., transferred data or time) from task
ni to task nj. Accordingly, C is the set of communication edges,
and ci,j represents the communication message (i.e., the time)
between ni and nj if they are not assigned to the same processor.
W is an |N| × |P| matrix, where wi,k denotes the execution time
of task ni running on processor pk. pred(ni) represents the set of
immediate predecessors of task ni, and succ(ni) represents the set
of immediate successors of task ni.

In a given DAG, the task without a predecessor is the entry task
denoted as nentry, and the taskwithout any successor is the exit task
denoted as nexit. If a DAG has multiple nentry or nexit tasks, a dummy
Fig. 1. System model of DAG scheduling service on clouds [4].

Fig. 2. A DAG-based sample with ten tasks [6].

Table 1
Execution time of tasks on different resources in Fig. 2 [6].

ni p1 p2 p3

1 14 16 9
2 13 19 18
3 11 13 19
4 13 8 17
5 12 13 10
6 13 16 9
7 7 15 11
8 5 11 14
9 18 12 20

10 21 7 16

entry or exit task with zero-weight dependencies is added to the
graph.

Fig. 2 shows a motivating example of a DAG-based parallel
application with 10 tasks. Table 1 provides the execution times of
tasks on three processors {p1, p2, p3}. As shown in Fig. 2, theweight
12 of the edge between n1 and n3 represents the communication
time denoted as c1,3 = 12 if n1 and n3 are not assigned to the
same processor. As indicated in Table 1, the execution time of task
n1 on processor p1 is 14, denoted as w1,1 = 14. The same task
has different execution times on different resources because of the
heterogeneity of processors.



4 W. Chen et al. / Future Generation Computer Systems 74 (2017) 1–11
3.2. Cost model

The cost model is based on a pay-as-you-go condition, and
the users are charged according to the amount of time that they
have used processors. Each processor has an individual unit price
because processors in the system are completely heterogeneous.
We assume that pricek is the unit price of the allocated computing
service on processor pk. All computation and storage services are
assumed to be in the same physical region. Hence, communication
time ci,j only depends on the amount of data to be transferred
between task ni and task nj and is independent of the computation
service on the processors [21]. The only exception is when both
tasks ni and nj are executed on the same processor, where ci,j = 0.
Furthermore, the internal data transfer cost is free in most actual
applications, so the data transfer cost is assumed to be zero in our
model. Accordingly, we formally define the cost costi,k of task ni on
processor pk and total cost cost(G) of a DAG as follows:

costi,k = cost(ni, pk) = wi,k × pricek, (1)

cost(G) =

|N|
i=1

wi,f (i) × pricef (i), (2)

where f (i) is the index of the processor assigned to task ni, wi,f (i) is
the execution time of task ni on processor f (i), pricef (i) is the unit
price of processor pf (i).

3.3. Budget constraint

As the execution time of each task on processors is known, the
minimum and maximum costs of task ni, denoted by costmin(ni)
and costmax(ni), respectively, can be obtained by traversing all the
processors. For the total cost of the application, G is the sum of that
of each task, the minimum and maximum costs of a DAG are:

costmin(G) =

|N|
i=1

costmin(ni), (3)

costmax(G) =

|N|
i=1

costmax(ni), (4)

respectively.
Assuming that the budget constraint of an application is

costbud(G), then it should be larger than or equal to costmin(ni) and
less than or equal to costmax(ni); otherwise, costbud(G) is not always
satisfied. Hence, this study assumes that costbud(G) belongs to the
scope of costmin(ni) and costmax(ni), that is,

costmin(G) ≤ costbud(G) ≤ costmax(G). (5)

3.4. Problem formulation

This study addresses the task scheduling problem of assigning
an available processor with a proper price for each task while
minimizing the schedule length of the application and ensuring
that the total cost of the application does not exceed the budget
constraint. The formal description is finding the processor and
budget assignments for all tasks with the objective of minimizing
the schedule length of the application,

SL(G) = AFT (nexit),

where AFT (nexit) represents the actual finish time (AFT) of the exit
task, subject to its budget constraint:

cost(G) =

|N|
i=1

cost(ni, pf (i)) ≤ costbud(G). (6)

Table 2 shows the mathematical notations used in this paper.
Table 2
Mathematical notations in this paper.

Notation Definition

wi,k Execution time of task ni running on processor pk
ci,j Communication time between ni and nj
pred(ni) Set of immediate predecessors of task ni
succ(ni) Set of immediate successors of task ni
ranku Upward rank value of tasks
f (i) Index of the processor assigned to task ni
pricek Unit price of processor pk
costi,k cost(ni, pk), cost of task ni on processor pk ,
costmin(ni) Minimum cost of executing task ni
costmax(ni) Maximum cost of executing task ni
costmin(G) Minimum cost of the application G
costmax(G) Maximum cost of the application G
costbud(G) Budget constraint of the application G
cost(G) Total cost of the application G
SL(G) Schedule length of the application G
bl Budget level of an application
costbl(ni) Cost of unassigned task ni
costbud(ni) Budget constraint of task ni
∆cost(ni) Spare budget of task ni

Table 3
Upward rank values for tasks in Fig. 2 [6].

ni n1 n3 n4 n2 n5 n6 n9 n7 n8 n10

ranku(ni) 108 80 80 77 69 63 44 43 36 15

3.5. Task prioritization

We first need to set the priority of task assignment before as-
signing tasks to processors. Similar to [11,12], we employ ranku of
a task as the common task priority standard:

ranku(ni) = wi + max
nj∈succ(ni)

{ci,j + ranku(nj)},

where wi is the average execution time of task ni on processors
and calculated as wi =

|P|

k=1 wi,k/ |P|. It represents the length
of the longest path from task ni to the exit node nexit, includ-
ing the communication time between tasks and execution time of
tasks. For the exit task, ranku(nexit) = wexit. Table 3 shows the
upward rank values of all tasks in Fig. 2. Note that, as observed
from Table 3, the task priority by the decreasing order of ranku is
{n1, n3, n4, n2, n5, n6, n9, n7, n8, n10}.

4. Minimizing schedule length with budget constraints

In this section, the algorithm for minimizing the schedule
length using the budget level (MSLBL) is presented, which aims
to find a fair schedule policy for minimizing the schedule length
of budget constrained applications with low complexity and high
performance on heterogeneous cloud computing systems. Such
problem is decomposed into two sub-problems, namely, satisfying
the budget constraint andminimizing the schedule length.We first
solve these two sub-problems separately, and then present the
algorithm by integrating the two sub-problems.

4.1. Existing HBCS algorithm

Before the MSLBL algorithm is presented, we analyze the
existing algorithm HBCS. Considering that users consume services
based on their QoS requirements and minimizing the schedule
length of budget constrained applications is one of the most
important concerns, the state-of-the-art HBCS [11] is proposed by
presupposing the unassigned tasks with the minimum execution
cost while still satisfying the budget constraint of the application.
The objective of HBCS is to quantitatively select the processor



W. Chen et al. / Future Generation Computer Systems 74 (2017) 1–11 5
Fig. 3. Scheduling of the application in Fig. 2 with costbud(G) = 500 using HBCS [11].
Table 4
Unit price of processors in Fig. 2.

pk pricek

p1 3
p2 5
p3 7

with the highest worthiness value for tasks by the descending
order of ranku andminimize the schedule length of the application
under the user’s specified budget constraint. The core details are
explained as follows:

(1) HBCS first invokes the HEFT algorithm on all the processors
and obtains costHEFT(G) and costmin(G).

(2) HBCS compares costHEFT(G) with costbud(G). If costbud(G) is
larger than or equal to costHEFT(G), it returns the schedule map
assigned by HEFT.

(3) HBCS preassigns each task with the minimum execu-
tion cost and initializes the parameters, then traverses all pro-
cessors for all tasks by the descending order of ranku. It de-
termines the processor for tasks by calculating the parameters
FT (ni, pk), Cost(ni, pk), CostCoeff , worthiness(ni, pk) and RB.

(4) HBCS assigns tasks to the processor with the highest
worthiness value and returns the schedule map.

For convenience of description, we define the spare budget
to observe the budget assignment of tasks in applications on
heterogeneous cloud computing systems.

Definition 1 (Spare Budget). Spare budget is defined as the
difference between the budget constraint of a task and its
preassigned cost, as shown in Eq. (7):

∆cost(ni) = costbud(ni) − costpre(ni), (7)

where costbud(ni) is the budget constrained cost of task ni, costpre
(ni) is the preassigned cost of the unassigned task ni. Initially, the
spare budget of application G is the difference between costbud(G)
and costpre(G).

We illustrate the motivating parallel application to explain the
HBCS algorithm. We set the budget constraint of G as costbud(G) =

500.We assume that the unit price of processors in Fig. 2 is known,
as shown in Table 4. We compute the minimum cost value of the
application as costmin(G) = 353 using Eq. (6). Table 5 shows the
task assignment of the parallel application in Fig. 2 using HBCS,
where all tasks satisfy their individual budget constraints. The
actual execution cost of the application is cost(G) = 499, and its
schedule length is SL(G) = 101. Fig. 3 also shows the scheduling
of the parallel application G in Fig. 2 with costbud(G) = 500
using HBCS. Note that the arrows in Fig. 3 represent the generated
communication times between tasks.

This example verifies that the use of HBCS can ensure that
the actual cost of the application does not exceed the user given
Table 5
Task assignment of the application in Fig. 2 with costbud(G) = 500 using HBCS [11].

ni ∆ cos t costbud(ni) AST (ni) AFT (ni) f (ni) costi,f (ni)

1 126 189 0 9 P3 63
3 26 159 9 28 P3 133
4 25 65 18 26 P2 40
2 25 64 27 40 P1 39
5 25 61 40 52 P1 36
6 1 64 28 37 P3 63
9 1 55 52 70 P1 54
7 1 22 70 77 P1 21
8 1 16 77 82 P1 15

10 1 36 94 101 P2 35

cost(G) = 499 ≤ costbud(G), SL(G) = 101.

budget constraint, that is, cost(G) ≤ costbud(G). However, as shown
in Table 5, the task with higher priority has more spare budget
than those with low priorities. The potential reason for this is that
HBCS presupposes unassigned tasks in the application with the
minimum execution cost and the spare budget of the application is
shared by the former assigned tasks that have more opportunities.
Thus, the task with low priority tends to select processors with
minimum costs but long execution times, which may result in a
longer schedule length of the application. As shown in Table 5,
tasks n6 to n10 have few spare budget available. It is unfair for
taskswith lowpriority. Thus, the HBCS algorithm should be further
optimized.

4.2. Satisfying budget constraint

Assuming that the task to be assigned is ns(j), where s(j) rep-
resents the jth assigned task, then {ns(1), ns(2), . . . , ns(j−1)} rep-
resents the task set where the tasks have been assigned, and
{ns(j+1), ns(j+2), . . . , ns(|N|)} represents the task set where the tasks
have not been assigned. Initially, all tasks of the application are
unassigned. To ensure fairness for all tasks as much as possible, we
first provide the definition of the global level [4].

Definition 2 (Budget Level). Budget level is defined as the ratio of
the difference between costbud(G) and theminimumexecution cost
of the application to the difference between the maximum and
minimum execution costs of application G, as shown in Eq. (8):

bl =
costbud(G) − costmin(G)

costmax(G) − costmin(G)
. (8)

According to Eqs. (5) and (8), we have bl ∈ [0, 1]. Note that,
the original bl is only applied to homogeneous cloud computing
systems [4]. In this study,wemake bl be suitable for heterogeneous
systemsby transferring the budget constraint of an application into
budget constraints of tasks and complete scheduling based on EFT.
The workflow model in [4] does not consider the communication



6 W. Chen et al. / Future Generation Computer Systems 74 (2017) 1–11
time between tasks. However, we consider both the precedence
constraint and the communication time between tasks in our
application model. Last but not least, we give the proof of
converting the budget constraint of an application into budget
constraints of tasks using the budget level.

Then, we preassign unassigned tasks with a budget level cost
described as:

costbl(ns(j)) = costmin(ns(j)) + (costmax(ns(j))

− costmin(ns(j))) × bl. (9)

Correspondingly, costpre(ns(j)) in Eq. (7) is equal to costbl(ns(j)).
According to Eqs. (8) and (9):

costmin(ns(j)) ≤ costpre(ns(j)) ≤ costmax(ns(j)). (10)

Hence, when assigning ns(j), the total cost of the application G is
calculated as:

costns(j)(G) =

j−1
i=1

costs(i),f (s(i)) + cs(j),pk +

|N|
i=j+1

costbl(ns(i)).

For any task ns(j), the actual execution cost cos(G) should be less
than or equal to costbud(G)only if costns(j)(G) ≤ cos tbud(G). Its proof
is provided in the following.

Theorem 1. Each task in the parallel application G can always find
an assignment of processors to satisfy:

costns(j)(G) =

j−1
i=1

costs(i),f (s(i)) + costs(j),pk

+

|N|
i=j+1

costbl(ns(i)) ≤ costbud(G). (11)

Proof. We use the mathematical induction to prove it.
First, for the entry task n1 = ns(1), all tasks are not assigned to

processors:

costns(1)(G) = costs(1),pk +

|N|
i=2

costbl(ns(i)) ≤ costbud(G). (12)

According to Eqs. (8), (9) and (12), we have

costns(1) = costs(1),pk +

|N|
i=2

costbl(ns(i))

= costs(1),pk +

|N|
i=1

costbl(ns(i)) − costbl(ns(1))

= costs(1),pk +

|N|
i=1

costmin(ns(i))

+


|N|
i=1

costmax(ns(i)) −

|N|
i=1

costmin(ns(i))


× bl − costbl(ns(1))

= costs(1),pk + cos tbud(G) − costbl(ns(1)) (13)

Namely, Eq. (13) should be satisfied

costs(1),pk + cos tbud(G) − costbl(ns(1)) ≤ cos tbud(G). (14)

According to Eq. (10), costbl(ns(1)) is larger than or equal to
costmin(ns(1)), that is, the processor with the minimum execution
cost can be assigned to task ns(1) at the least. Hence, ns(1) can find
an assigned resource to satisfy Eq. (14), that is, Eq. (11) is satisfied
for ns(1).
Second, we assume that the jth task ns(j) can find an assigned
processor pf (s(j)) to satisfy costbud(G), and we have:

costns(j)(G) =

j−1
i=1

costs(i),f (s(i)) + costs(j),f (s(j))

+

|N|
i=j+1

costbl(ns(i)) ≤ costbud(G). (15)

such that,

costns(j)(G) =

j
i=1

costs(i),f (s(i)) +

|N|
i=j+1

costbl(ns(i)) ≤ costbud(G).

Hence,

j
i=1

costs(i),f (s(i)) ≤ costbud(G) −

|N|
i=j+1

costbl(ns(i)). (16)

Finally, for the (j+1)th task, the execution cost of an application
is

costns(j+1)(G) =

j
i=1

costs(i),f (s(i)) + costs(j+1),f (s(j+1))

+

|N|
i=j+2

costbl(ns(i)) ≤ costbud(G). (17)

Known as Eqs. (13) and (14), we have:

costns(j+1)(G) ≤ costbud(G) −

|N|
i=j+1

costbl(ns(i))

+ costs(j+1),f (s(j+1)) +

|N|
i=j+2

costbl(ns(i))

= costbud(G) − costbl(ns(j+1))

+ costs(j+1),f (s(j+1)). (18)

When ns(j+1) is assigned a cost in range of costmin(ns(j+1)) to
costbl(ns(j+1)), we have:

costns(j+1)(G) ≤ costbud(G). (19)

According to Eq. (10), ns(j+1) can at least be assigned to the proces-
sor with theminimum cost, that is, ns(j+1) can also find an assigned
processor to satisfy costbud(G).

When all tasks can find individual assigned processors to satisfy
costbud(G), Theorem 1 is satisfied. This completes the proof.

4.3. Minimizing schedule length

HEFT is a well-known precedence-constrained task scheduling,
which is based on the DAG model to reduce schedule length to a
minimum combined with low complexity and high performance
in heterogeneous systems [6,22]. Task prioritization is based on
upward rank value (ranku) and task assignment is based on the
earliest finish time.

EST

nj, pk


and EFT


nj, pk


denote the earliest start time (EST)

and EFT of task nj on processor pk, respectively, defined as:

EST (nj, pk) = max{Tavail(pk), max
ni∈pred(nj)

{AFT (ni) + ci,j}}, (20)

EFT (nj, pk) = EST (nj, pk) + wj,k, (21)

where Tavail(pk) is the earliest time at which the processor pk is
ready for task execution. Communication time ci,j is zero if nj and



W. Chen et al. / Future Generation Computer Systems 74 (2017) 1–11 7
its predecessor ni are assigned to the same resource. For the entry
task, EST (nentry, pk) = 0. AST (ni) and AFT (ni) are the actual start
time and the actual finish time of task ni, respectively.

To select the best suitable processor, the cost and time trade-
off is evaluated. Typically, the faster the speed of processors is, the
higher the execution cost of tasks is. However, this is not always
the case on heterogeneous computing systems. After transferring
the budget constraint of applications to that of each task, tasks
are assigned to processors with the minimum EFT by using the
insertion-based scheduling strategy while satisfying the budget
constraint of tasks.

4.4. Proposed MSLBL algorithm

We first give the budget constraint of each task before we
propose the algorithm. According to Eq. (11), we have:

costs(j),f (s(j)) ≤ costbud(G) −

j−1
i=1

costs(i),f (s(i)) −

|N|
i=j+1

costbl(ns(i)).

Hence, let the budget constraint of task ns(j) be

costbud(ns(j)) = costbud(G) −

j−1
i=1

costs(i),f (s(i))

−

|N|
i=j+1

costbl(ns(i)). (22)

Then, the budget constraint of the application can be transferred
to that of each task. That is, we just let ns(j) satisfy the following
constraint:
costs(j),f (s(j)) ≤ costbud(ns(j)).

Hence, when assigning the task ns(j), we can directly consider
the budget constraint costbud(ns(j)) of ns(j) and do not have
to be concerned about the budget constraint costbud(G) of the
application G. In this way, a low time complexity heuristic
algorithm can be obtained.

Inspired by the above analysis,we propose theMSLBL algorithm
to minimize the schedule length while still satisfying the budget
constraint of the application. The steps of MSLBL are described in
Algorithm 1.

The main idea of MSLBL is that the budget constraint of the
application is transferred to that of each task to change the budget
constraint of each task by using the budget level. The algorithm
assigns processors to tasks by the descending order of ranku values,
and each task select the processor with the minimum EFT while
satisfying its individual budget-level constraint. The core details
are explained as follows:

(1) In Lines 1–6, the minimum cost value of G and budget level
cost of tasks are computed.

(2) In Lines 7–9, the possibility of finding a schedule under the
user provided budget constraint is verified.

(3) In Lines 10–23, the algorithm starts to map the tasks of the
application to processors. At each step, the task with the highest
priority among the unscheduled tasks is selected as the current
task ns(j), and its budget constraint is set. Next, for task ns(j), the
processor that satisfies its budget level constraint and has the
minimum EFT is selected. After assigning the processor to ns(j), the
spare budget ∆ cos t is updated using Eq. (7) and the for loop is
broken.

(4) In Lines 24–25, the actual execution cost and final schedule
length SL(G) are computed.

In terms of time complexity,MSLBL requires the computation of
ranku and theminimumandmaximumcosts of the application that
has complexityO(|N|×|P|). In the processor selection phase for the
current task, the complexity is O(|N|× |P|) for computing EFT, and
O(|P|) for selecting the resource with the minimum EFT, satisfying
its budget constraint. The total time is O(|N| × |P| + |N| · (O(|N| ×

|P|) + |P|, where time complexity is of the order O(|N|
2
× |P|).
Algorithm 1 The MSLBL Algorithm
Input: G = {N, E, C,W }, for ∀j, pj ∈ P, pricej, costbud(G)
Output: SL(G), cost(G)
1: Sort the tasks in a list dlist by descending order of ranku values;
2: for (∀i, ni ∈ N) do
3: Compute costmin(ni) and costmax(ni).
4: end for
5: Compute costmin(G) and costmax(G) using Eqs. (3) and (4);
6: Compute bl, costbl(ni) and ∆cost(ni) using Eqs. (7), (8) and (9), respectively;
7: if (costbud(G) ≤ costmin(G)) then
8: return 0;
9: end if
10: while (there are tasks in dlist) do
11: ns(j) = dlist.out();
12: Compute costbud(ns(j)) using Eq. (22);
13: for (∀k, pk ∈ P) do
14: Compute costs(j),k and EFT (ns(j), pk) using Eq. (21);
15: end for
16: for (k = 1; i ≤ |P| ; k + +) do
17: if (costs(j),k ≤ costbud(ns(j))) then
18: Select the processor with the minimum EFT for task ns(j);
19: Update ∆cost using Eq. (7);
20: AFT(ns(j)) = EFT (ns(j), pk);
21: end if
22: end for
23: end while
24: Compute the actual cost cost(G) using Eq. (2);
25: Compute SL(G) = AFT (nexit );
26: return SL(G), cost(G).

Table 6
Task assignment of the application in Fig. 2 with costbud(G) = 500 using MSLBL.

ni ∆ cos t costbud(ni) AST (ni) AFT (ni) f (ni) costi,f (ni)

1 0 50 0 14 P1 42
3 8 63 14 25 P1 33
4 30 86 23 31 P2 40
2 46 104 25 38 P1 39
5 65 70 25 35 P3 70
6 0 80 35 44 P3 63
9 17 95 54 66 P2 60
7 35 69 38 45 P1 21
8 48 80 59 64 P1 15

10 65 112 75 82 P2 35

cost(G) = 418 ≤ costbud(G), SL(G) = 82.

4.5. Example of the MSLBL algorithm

We present an motivating example to show the results using
the MSLBL algorithm. We consider the condition costbud(G) = 500
for the application in Fig. 2, and the unit price of processors is
shown in Table 4. Table 6 shows the task assignment of the parallel
application in Fig. 2 with costbud(G) = 500 using MSLBL. The
total cost of the application is 418 and its schedule length is 82,
which is less than that using the HBCS algorithm. Fig. 4 shows the
scheduling of the parallel application G in Fig. 2 with costbud(G) =

500 using MSLBL.

5. Experimental results and discussion

This section presents performance comparisons of the MSLBL
algorithm with HBCS [11] and DBCS [12] algorithms because they
have the similar application models.

5.1. Experimental metrics

We resort to simulation method to verify our algorithms.
We implement a simulator in Java language. All simulative
experiments are conducted on a PC platform with an Intel Core
i5 2.60 GHz CPU and 4 GB memory. The simulated heterogeneous
cloud computing system contains 128 processors with different
computing abilities and unit prices, where the types and the prices
of processors are based on the Amazon Elastic Compute Cloud
(EC2) environment [32]. The application and processor parameters



8 W. Chen et al. / Future Generation Computer Systems 74 (2017) 1–11
Fig. 4. Scheduling of the application in Fig. 2 with costbud(G) = 500 using MSLBL.
Table 7
Actual cost and schedule length of Fast Fourier transform applications with budget
constraints for varying number of tasks.

|N| costmin(G) costbud(G) HBCS [11] MSLBL
cost(G) SL(G) cost(G) SL(G)

96 40 48 48 796 47 739
224 76 91 91 1 302 90 984
512 221 265 265 13 945 265 9 967

1152 463 556 556 25 637 556 15 222
2560 770 924 924 31 991 924 22 401

are: 0.01 $/h ≤ pricek ≤ 1 $/h, 0.01 h ≤ wi,k ≤ 128 h, 0.01 h ≤

ci,j ≤ 30 h. The number of tasks can be dynamically set and varies
between 10 and 2627 in our experiments. The average bandwidth
between the computation services is set to 20 MBps which is the
approximate average bandwidth of the computation services (EC2)
in Amazon [5]. The number of tasks executed on each processor is
determined by the scheduling algorithm.

The performancemetrics selected for comparison are the actual
cost cost(G), the final schedule length SL(G) of budget constrained
applications, and the acceptance ratio (AR) of budget and deadline
constrained applications. The AR is expressed by Eq. (23):

AR =
number of acceptance

total number of experiments
. (23)

To verify the effectiveness of the scheduling algorithms, real
applications with precedence constrained tasks are widely used in
some high-performance computing, such as Fast Fourier transform
and Gaussian elimination [6]. We use these two types of real
parallel applications under the condition of the budget and budget-
deadline constraints to observe the results.

5.2. Fast Fourier transform parallel applications

A new parameter ρ is used as the size for the Fast Fourier
transform application, and the number of tasks is |N| = 2 ×

ρ−1+ρ × log2ρ, where ρ = 2y for some integer y. Fig. 5 shows
an example of the Fast Fourier transform parallel applications with
ρ = 8. Note that ρ exit tasks exist in this application with size ρ.
To adapt the application of this study, we create a dummy exit task
with zero execution time, which connects these ρ exit tasks with
zero communication time.

5.2.1. Varying number of tasks
This experiment is conducted to compare the actual cost

and final schedule lengths of Fast Fourier transform parallel
applications for varying number of tasks. We limit costbud(G) as
costmin(G) × 1.2. The number of tasks is changed from 96 (small
scale) to 2560 (large scale) when ρ is changed from 16 to 256.

As shown in Table 7, the budget constraints and actual costs of
the applications increase gradually with the number of tasks. At
Table 8
Actual cost of the Fast Fourier transform applicationwith ρ = 256 (i.e.,|N| = 2560)
for varying budget constraints.

|N| costmin(G) costbud(G) HBCS [11] MSLBL
cost(G) SL(G) cost(G) SL(G)

2560 923 1015 1015 48 321 1015 35 134
2560 923 1107 1107 48 319 1107 2 9178
2560 923 1200 1200 48 292 1200 25 428
2560 923 1292 1292 48 235 1292 21 404
2560 923 1384 1384 48 235 1384 19 794

the same time, the actual cost of applications in different scales
using HBCS and MSLBL satisfy the budget constraints. Such results
verify that these algorithms can satisfy the budget constraints of
applications in practice.

In addition to satisfying the budget constraints of the applica-
tions, an exciting phenomenon is that MSLBL can generate shorter
schedule length than HBCS in different scale parallel applications.
Furthermore, the difference becomesmore andmore obvious with
the increase of the number of tasks. For example, when |N| =

2560, the schedule length usingMSLBL is 22401, which is 70% of 31
991 that used HBCS. Such results indicate that MSLBL is very suit-
able for minimizing schedule length of budget constrained parallel
applications and is useful for different scale parallel applications.

5.2.2. Varying budget constraints
To observe the performance in different scales of applications,

this experiment is conducted to compare the actual cost and final
schedule length of Fast Fourier transform parallel applications for
varying budget constraints. We limit the size of the application as
ρ=256 (i.e.,|N| = 2560). costbud(G) is changed from costmin(G)×1.1
to costmin(G) × 1.5.

Table 8 shows that the actual costs of applications using HBCS
and MSLBL can satisfy the budget constraints in all cases. In
addition, the schedule length using MSLBL is less than those of
the HBCS algorithm. Furthermore, the difference in the schedule
lengths using the two algorithms becomesmore andmore obvious
with the increasing budget constraints of the application. For
example, when costbud(G) is costmin(G) × 1.1, the schedule lengths
using MSLBL is 35 134, 73% of that using HBCS, whereas that using
MSLBL is 19 794 and 41% of that using HBCS when costbud(G) is
costmin(G) × 1.5 in this experiment.

5.3. Gaussian elimination parallel applications

To verify the performance further, this experiment uses another
important real parallel application (i.e., Gaussian elimination) as
experimental object. A new parameter ρ is used as the matrix size
of the Gaussian elimination application, and the total number of
tasks is |N| =

ρ2
+ρ−2
2 [6]. Fig. 6 shows an example of the Gaussian

elimination parallel application with ρ = 5.



W. Chen et al. / Future Generation Computer Systems 74 (2017) 1–11 9
Fig. 5. Example of fast Fourier transform parallel applications with ρ = 8.
Fig. 6. Example of the Gaussian elimination parallel application with ρ = 5.

Table 9
Actual cost and schedule length of Gaussian elimination applications with budget
constraints for varying numbers of tasks.

|N| costmin(G) costbud(G) HBCS [11] MSLBL
cost(G) SL(G) cost(G) SL(G)

77 25 30 30 1 506 30 1 506
299 168 201 201 3 520 201 3 341
665 230 275 275 12 977 275 8 797

1175 439 527 527 21 436 526 16 409
1829 629 755 754 33 903 754 25 076
2627 2142 2570 2570 35 460 2569 22 389

5.3.1. Varying number of tasks
To observe the performance in different scales of real appli-

cations further, this experiment is conducted to compare the ac-
tual costs and final schedule length of Gaussian elimination par-
allel applications for varying number of tasks. We limit costbud(G)

as costmin(G)× 1.2. The number of tasks is changed from 77 (small
scale) to 2627 (large scale) when ρ is changed from 12 to 72, which
are approximately equal to the numbers of the Fast Fourier trans-
form application in experiment 5.2.1.
Table 10
Actual cost and schedule length of Gaussian elimination parallel applications with
ρ = 72 (i.e., |N| = 2627) for varying budget constraints.

|N| costmin(G) costbud(G) HBCS [11] MSLBL
cost(G) SL(G) cost(G) SL(G)

2627 1026 1129 1129 61 297 1129 50 800
2627 1026 1232 1232 61 359 1231 46 711
2627 1026 1334 1334 61 096 1334 44 497
2627 1026 1437 1437 61 058 1436 40 957
2627 1026 1540 1540 60 819 1540 38 934

Table 9 shows the results of the Gaussian elimination applica-
tions for varying numbers of tasks using two algorithms. The ac-
tual cost and schedule length of applications increase with the in-
crease of the number of tasks. However, the schedule length in
Gaussian elimination parallel applications is longer than that in
Fast Fourier transform parallel applications. Such results indicate
that the Fast Fourier transform application has better parasitism
than the Gaussian elimination application in the structure, and can
generate shorter schedule length.

Similar to the results of Experiment 5.2.1, the actual costs of
applications using HBCS and MSLBL can still satisfy and are close
to the budget constraints of Gaussian elimination applications
in different scales. The schedule length using MSLBL is shorter
than that using HBCS in large-scale applications. For example,
when the task number exceeds 600, the schedule lengths using
MSLBL is 22 389, while that using HBCS are 35 460. The former
is merely 63.1% of the latter. Such results indicate that MSLBL can
satisfy the budget constraints with the minimum schedule length
and generate shorter schedule lengths than HBCS for large-scale
Gaussian elimination applications.

5.3.2. Varying budget constraints
This experiment is conducted to compare the actual cost and the

final schedule length of Gaussian elimination parallel applications
for varying budget constraints. We limit the size of the application
as ρ = 72 (i.e.,|N| = 2627), which is approximately equal to the
number of tasks of the Fast Fourier transform parallel application
in Experiment 5.2.2. costbud(G) is changed from costmin(G)× 1.1 to
costmin(G) × 1.5.

Table 10 shows the results of the Gaussian elimination
parallel application for varying budget constraints using the two
algorithms. Similar to the results of Table 8 for Experiment 5.2.2,



10 W. Chen et al. / Future Generation Computer Systems 74 (2017) 1–11
Table 11
Acceptance ratio of the Fast Fourier transform applications with budget-deadline
constraints for varying numbers of tasks.

|N| HBCS [11] DBCS[12] MSLBL

96 71% 73% 87%
224 66% 67% 82%
512 36% 36% 64%

1152 10% 10% 37%
2560 0% 0% 15%

the schedule length using MSLBL is shorter than that using HBCS
in the same scale levels. When costbud(G) is costmin(G) × 1.5, the
schedule lengths using HBCS and MSLBL are 60 819 and 38 934,
respectively. The latter is 64% of the former. The actual costs using
two algorithms are within the budget constraints in all cases.
The overall trend of both Gaussian elimination and Fast Fourier
transform applications in the same scale is similar. That is, MSLBL
has the shorter schedule length than HBCS for budget constrained
parallel applications. Such results indicate that MSLBL is more
effective in different types of parallel applications than the state-
of-the-art algorithm.

5.4. Verification of budget-deadline constrained scheduling

The proposed approach is verified further by experiments of
budget-deadline constrained parallel applications. For the problem
of budget and deadline constrained scheduling, a scheduling
can be accepted only if its actual cost and schedule length of
the application can satisfy the budget and deadline constraints,
respectively. DBCS is used to obtain a feasible scheduling by
considering the budget and deadline constraints of the application
simultaneously. HBCS and the proposed algorithm (i.e., MSLBL) are
used to minimize the schedule length while satisfying the budget
constraint of the application.

This experiment is conducted to compare the AR of Fast
Fourier transform and Gaussian elimination parallel applications
for varying number of tasks. We limit the size of applications
changed from 96 (small scale) to 2560 (large scale) when ρ is
changed from 16 to 256 in the Fast Fourier transform applications,
and changed from 77 (small scale) to 2627 (large scale) when
ρ is changed from 12 to 72 in the Gaussian elimination parallel
applications. The budget constraint of applications costbud(G) is
considered in the range of costmin(G) × 1.1 to costmin(G) × 10.
The deadline constraint of applications is defined in the range
of SLHEFT(G) × 1.1 to SLHEFT(G) × 10, where SLHEFT(G) is the
schedule length of an application using the HEFT algorithm. The
total number of experiments is 1000.

Table 11 shows that the AR using the three algorithms
decreases with the increase of the number of tasks in the Fast
Fourier transform applications. However, the AR using MSLBL is
significantly higher than those using HBCS and DBCS in the same
scale. For example, when |N| = 1152, the AR using MSLBL and
HBCS are 37% and 10%, respectively. An interesting phenomenon
is that the ARs obtained by using HBCS and DBCS are almost
the same. This is mainly because these two algorithms adopt the
preassignment scheme with the minimum execution cost of tasks.

Compared with the results in Table 11, the change trend of
the AR of Gaussian elimination applications in Table 12 is similar
to that of Fast Fourier transform applications. However, the ARs
using the three algorithms change slowly with the increase of the
number of tasks. The AR using MSLBL is higher than those using
HBCS and DBCS, and the difference between them increases with
the increase of the number of tasks. The ARs using HBCS and DBCS
are roughly the same in the same scale levels. The results indicate
that MSLBL obtains the minimum schedule length under budget
Table 12
Acceptance ratio of the Gaussian elimination parallel applications with budget-
deadline constraints for varying numbers of tasks.

|N| HBCS [11] DBCS [12] MSLBL

77 77% 88% 89%
299 84% 84% 89%
665 77% 77% 81%

1175 62% 62% 83%
1829 60% 60% 88%
2627 47% 47% 73%

and deadline constraints and has a better acceptance rate than the
other two algorithms.

The combination of all the results of Fast Fourier transform
and Gaussian elimination parallel applications with budget and
budget-deadline constraints indicates that the proposed MSLBL
algorithm is very effective in schedule length minimization while
satisfying the budget constraints.

6. Conclusions

An algorithm of schedule length minimization MSLBL for
budget constrained parallel applications on heterogeneous cloud
computing systems is developed in this study. First, the proposed
algorithm can always satisfy the budget constraint, and the
correctness is verified using proof and experiments. Second,
the proposed MSLBL algorithm implements efficient and low
time complexity task scheduling to minimize the schedule
length. The MSLBL algorithm using the budget-level design
technique is highly efficient in satisfying the budget constraint and
minimizing the schedule length of different scales of real parallel
applications compared with the existing budget and budget-
deadline constrained algorithm. The proposed MSLBL algorithm
could effectively improve part of the cost-aware design for parallel
applications on heterogeneous cloud computing systems.

Acknowledgments

This work is partially supported by the National Natural
Science Foundation of China with Grant No. 61672217, 61602164,
the China Postdoctoral Science Foundation under Grant No.
2016M592422.

References

[1] M.W. Convolbo, J. Chou, Cost-aware DAG scheduling algorithms for minimiz-
ing execution cost on cloud resources, J. Supercomput. 72 (3) (2016) 985–1012.

[2] Y. Kong,M. Zhang, D. Ye, A belief propagation-basedmethod for task allocation
in open and dynamic cloud environments, Knowl.-Based Syst. 115 (2017)
123–132.

[3] J. Broberg, S. Venugopal, R. Buyya, Market-oriented grids and utility
computing: The state-of-the-art and future directions, J. Grid Comput. 6 (3)
(2008) 255–276.

[4] C.Q. Wu, X. Lin, D. Yu, et al., End-to-end delay minimization for scientific
workflows in clouds under budget constraint, IEEE Trans. Cloud Comput. 3 (2)
(2015) 169–181.

[5] Z. Wu, X. Liu, Z. Ni, et al., A market-oriented hierarchical scheduling strategy
in cloud workflow systems, J. Supercomput. 63 (1) (2013) 256–293.

[6] H. Topcuoglu, S. Hariri,M.Wu, Performance-effective and low-complexity task
scheduling for heterogeneous computing, IEEE Trans. Parallel Distrib. Syst. 13
(3) (2002) 260–274.

[7] X. Zhou, Y. Wang, X. Huang, C. Peng, Fast on-line task placement and
scheduling on reconfigurable devices., in: FPL, 2007, pp. 132–138.

[8] M.A. Rodriguez, R. Buyya, Deadline based resource provisioning and schedul-
ing algorithm for scientific workflows on clouds, IEEE Trans. Cloud Comput. 2
(2) (2014) 222–235.

[9] S. Abrishami, M. Naghibzadeh, D.H.J. Epema, Cost-driven scheduling of grid
workflows using partial critical paths, IEEE Trans. Parallel Distrib. Syst. 23 (8)
(2012) 1400–1414.

[10] F. Wu, Q. Wu, Y. Tan, et al., PCP-B2: Partial critical path budget balanced
scheduling algorithms for scientific workflow applications, Future Gener.
Comput. Syst. 60 (2016) 22–34.

http://refhub.elsevier.com/S0167-739X(16)30441-1/sbref1
http://refhub.elsevier.com/S0167-739X(16)30441-1/sbref2
http://refhub.elsevier.com/S0167-739X(16)30441-1/sbref3
http://refhub.elsevier.com/S0167-739X(16)30441-1/sbref4
http://refhub.elsevier.com/S0167-739X(16)30441-1/sbref5
http://refhub.elsevier.com/S0167-739X(16)30441-1/sbref6
http://refhub.elsevier.com/S0167-739X(16)30441-1/sbref7
http://refhub.elsevier.com/S0167-739X(16)30441-1/sbref8
http://refhub.elsevier.com/S0167-739X(16)30441-1/sbref9
http://refhub.elsevier.com/S0167-739X(16)30441-1/sbref10


W. Chen et al. / Future Generation Computer Systems 74 (2017) 1–11 11
[11] H. Arabnejad, J.G. Barbosa, A budget constrained scheduling algorithm for
workflow applications, J. Grid Comput. 12 (4) (2014) 665–679.

[12] H. Arabnejad, J.G. Barbosa, R. Prodan, Low-time complexity budget-deadline
constrained workflow scheduling on heterogeneous resources, Future Gener.
Comput. Syst. 55 (2016) 29–40.

[13] M. Malawski, G. Juve, E. Deelman, et al., Algorithms for cost-and deadline-
constrained provisioning for scientific workflow ensembles in iaasclouds,
Future Gener. Comput. Syst. 48 (2015) 1–18.

[14] T.C. Hu, Parallel sequencing and assembly line problems,Oper. Res. 9 (6) (1961)
841–848.

[15] G. Xie, G. Zeng, L. Liu, R. Li, K. Li, High performance real-time scheduling of
multiple mixed-criticality functions in heterogeneous distributed embedded
systems, J. Syst. Archit. (2016) 1–13.

[16] S. Abrishami, M. Naghibzadeh, D.H.J. Epema, Deadline-constrained workflow
scheduling algorithms for infrastructure as a service clouds, Future Gener.
Comput. Syst. 29 (1) (2013) 158–169.

[17] Q. Huang, S. Su, J. Li, P. Xu, K. Shuang, X. Huang, Enhanced energy-efficient
scheduling for parallel applications in cloud, in: Proceedings of the 2012 12th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing,
(ccgrid 2012), IEEE Computer Society, 2012, pp. 781–786.

[18] X. Xiao, G. Xie, R. Li, K. Li, Minimizing schedule length of energy consumption
constrained parallel applications on heterogeneous distributed systems. in:
14th IEEE International Symposium on Parallel and Distributed Processing
with Applications, ISPA 2016, 2016, pp. 1471–1476.

[19] L. Yang, J. Cao, S. Tang, N. Suri, Run time application repartitioning in dynamic
mobile cloud environments, IEEE Trans. Cloud Comput. 4 (3) (2016) 336–348.

[20] I.S. Rachel, J.S. Raj, V. Vasudevan, A reliable schedule with budget constraints
in grid computing, Int. J. Comput. Appl. 64 (3) (2013) 23–35.

[21] Y. Ju, R. Buyya, C.K. Tham, QoS-based scheduling of workflow applications on
service grids, in: Proc. of 1st IEEE International Conference on e-Science and
Grid Computing, 2005.

[22] G. Xie, R. Li, K. Li, Heterogeneity-driven end-to-end synchronized scheduling
for precedence constrained tasks and messages on networked embedded
systems, J. Parallel Distrib. Comput. 83 (2015) 1–12.

[23] A.C. Zhou, B. He, C. Liu, Monetary cost optimizations for hosting workflow-as-
a-service in IaaS clouds, IEEE Trans. Cloud Comput. 4 (1) (2016) 34–48.

[24] Y. Yuan, X. Li, Q. Wang, et al., Deadline division-based heuristic for cost
optimization in workflow scheduling, Inform. Sci. 179 (15) (2009) 2562–2575.

[25] W. Zheng, R. Sakellariou, Budget-deadline constrained workflow planning for
admission control, J. Grid Comput. 11 (4) (2013) 633–651.

[26] W. Wang, Q. Wu, Y. Tan, et al., Maximize throughput scheduling and
cost-Fairness optimization for multiple DAGs with deadline constraint,
in: Algorithms andArchitectures for Parallel Processing, Springer International
Publishing, 2015, pp. 621–634.

[27] Q. Liu, W. Cai, J. Shen, et al., A speculative approach to spatial–temporal
efficiency with multi-objective optimization in a heterogeneous cloud
environment, Secur. Commun. Netw. 9 (17) (2016) 4002–4012.

[28] F. Wu, Q. Wu, Y. Tan, Workflow scheduling in cloud: a survey, J. Supercomput.
(2015) 1–46.

[29] E.N. Alkhanak, S.P. Lee, R. Rezaei, et al., Cost optimization approaches for
scientific workflow scheduling in cloud and grid computing: A review,
classifications, and open issues, J. Syst. Softw. 113 (2016) 1–26.

[30] S. Singh, I.A. Chana, survey on resource scheduling in cloud computing: Issues
and challenges, J. Grid Comput. 14 (2) (2016) 217–264.

[31] Z. Fu, X. Sun, Q. Liu, et al., Achieving efficient cloud search services:
multi-keyword ranked search over encrypted cloud data supporting parallel
computing, IEICE Trans. Commun. 98 (1) (2015) 190–200.

[32] S. Bharathi, A. Chervenak, E. Deelman, et al. Characterization of scientific
workflows, in: The 3rd Workshop on Workflows in Support of Large Scale
Science, 2008, pp. 1–10.

Weihong Chen is an Associate Professor in Hunan City
University, China. She is current toward her Ph.D. degree
in computer science and engineering in Hunan University.
Hermain research interests include intelligent computing,
cloud computing, and parallel and reliable systems.
Guoqi Xie received his Ph.D. degree in computer science
and engineering from Hunan University, China, in 2014.
He was a Postdoctoral Researcher at Nagoya University,
Japan, from 2014 to 2015. Since 2015 He is working as
a Postdoctoral Researcher at Hunan University, China. He
has received the best paper award from ISPA 2016. His
major interests include embedded and real-time systems,
parallel anddistributed systems, software engineering and
methodology. He is a member of IEEE, ACM, and CCF.

Renfa Li is a Professor of computer science and electronic
engineering, and the Dean of College of Computer
Science and Electronic Engineering, Hunan University,
China. He is the Director of the Key Laboratory for
Embedded and Network Computing of Hunan Province,
China. His major interests include computer architectures,
embedded computing systems, cyber–physical systems,
and Internet of things. He is amember of the council of CCF,
a senior member of IEEE, and a senior member of ACM.

Yang Bai received her B.S. and M.S. degrees from Hunan
University in 2013 and 2016, respectively. She is currently
working on the Ph.D. degree at Hunan Province, Hunan
University. Her research interests include automotive
embedded systems, automotive cyber–physical systems.

Chunnian Fan received her Ph.D. degree in computer
science from Nanjing University in 2011. Her research
interests include parallel and distributed system, pattern
recognition and image processing.

Keqin Li is a SUNY Distinguished Professor of computer
science. His current research interests include parallel
computing and high-performance computing, distributed
computing, energy-efficient computing and communica-
tion, heterogeneous computing systems, cloud comput-
ing, big data computing, CPU–GPU hybrid and cooper-
ative computing, multicore computing, storage and file
systems, wireless communication networks, sensor net-
works, peer-to-peer file sharing systems, mobile com-
puting, service computing, Internet of things and cy-
ber–physical systems. He has published over 430 journal

articles, book chapters, and refereed conference papers, and has received several
best paper awards. He is currently or has served on the editorial boards of IEEE
Transactions on Parallel and Distributed Systems, IEEE Transactions on Computers,
IEEE Transactions on Cloud Computing, IEEE Transactions on Services Computing,
Journal of Parallel and Distributed Computing. He is an IEEE Fellow.

http://refhub.elsevier.com/S0167-739X(16)30441-1/sbref11
http://refhub.elsevier.com/S0167-739X(16)30441-1/sbref12
http://refhub.elsevier.com/S0167-739X(16)30441-1/sbref13
http://refhub.elsevier.com/S0167-739X(16)30441-1/sbref14
http://refhub.elsevier.com/S0167-739X(16)30441-1/sbref15
http://refhub.elsevier.com/S0167-739X(16)30441-1/sbref16
http://refhub.elsevier.com/S0167-739X(16)30441-1/sbref17
http://refhub.elsevier.com/S0167-739X(16)30441-1/sbref19
http://refhub.elsevier.com/S0167-739X(16)30441-1/sbref20
http://refhub.elsevier.com/S0167-739X(16)30441-1/sbref22
http://refhub.elsevier.com/S0167-739X(16)30441-1/sbref23
http://refhub.elsevier.com/S0167-739X(16)30441-1/sbref24
http://refhub.elsevier.com/S0167-739X(16)30441-1/sbref25
http://refhub.elsevier.com/S0167-739X(16)30441-1/sbref26
http://refhub.elsevier.com/S0167-739X(16)30441-1/sbref27
http://refhub.elsevier.com/S0167-739X(16)30441-1/sbref28
http://refhub.elsevier.com/S0167-739X(16)30441-1/sbref29
http://refhub.elsevier.com/S0167-739X(16)30441-1/sbref30
http://refhub.elsevier.com/S0167-739X(16)30441-1/sbref31

	Efficient task scheduling for budget constrained parallel applications on heterogeneous cloud computing systems
	Introduction
	Background
	Motivation
	Our contributions

	Related works
	Problem definition
	System model
	Cost model
	Budget constraint
	Problem formulation
	Task prioritization

	Minimizing schedule length with budget constraints
	Existing HBCS algorithm
	Satisfying budget constraint
	Minimizing schedule length
	Proposed MSLBL algorithm
	Example of the MSLBL algorithm

	Experimental results and discussion
	Experimental metrics
	Fast Fourier transform parallel applications
	Varying number of tasks
	Varying budget constraints

	Gaussian elimination parallel applications
	Varying number of tasks
	Varying budget constraints

	Verification of budget-deadline constrained scheduling

	Conclusions
	Acknowledgments
	References


