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• The FDCN approach is proposed to lessen the impact of data uncertainty.
• A model of the fuzzy deep convolution network is designed.
• The tensor is employed to investigate temporal and spatial properties of traffic flow.
• Experiments verify the performance of the FDCN in convergence and accuracy.
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a b s t r a c t

Predicting traffic flow is one of the fundamental needs to comfortable travel, but this task is challenging
in vehicular cyber–physical systems because of ever-increasing uncertain traffic big data. Although deep-
learning (DL) methods with outstanding performance recently have become popular, most existing DL
models for traffic flow prediction are fully deterministic and shed no light on data uncertainty. In this
study, a novel fuzzy deep-learning approach called FDCN is proposed for predicting citywide traffic flow.
This approach is built on the fuzzy theory and the deep residual network model. Our key idea is to
introduce the fuzzy representation into the DLmodel to lessen the impact of data uncertainty. A model of
fuzzy deep convolutional network is established to improve traffic flow predictionwhile investigating the
spatial and temporal correlation of traffic flow.We further propose pre-training and fine-tuning strategies
that efficiently learn parameters of the FDCN. To the best of our knowledge, this is the first time that a fuzzy
DL approach has been applied to represent traffic features for traffic flow prediction. Experimental results
demonstrate that the proposed approach to traffic flow prediction has superior performance compared
with state-of-the-art approaches.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Background

In modern society, the number of vehicles has been increasing
in cities and on freeways. Many problems related to this increase,
such as traffic congestion, may lead to longer timewasted in travel
and thus may result in money loss as well as traffic accidents [1,2].
Obtaining accurate and timely traffic flow information is necessary
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for individual travelers. With the current explosion of traffic flow
data, predicting traffic flow using big data is crucial to ensuring
safe travel and designing superefficient navigation, which may
help travelers make informed travel decisions and improve public
safety [3].

Traffic flow prediction on a large scale heavily depends on
historical traffic data and other relevant information (i.e., weather
conditions and traffic accidents) and is regarded as a key function
component in the vehicular cyber–physical system (VCPS) [4]. The
VCPS is a complex system with seamless integration of compu-
tation, communication and control technology, and advances in
the VCPS will enable comfortability, safety and security [5,6]. Deep
learning (DL), which is a new method of machine learning, learns
useful features by building a multilayer model to achieve accurate
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image classification or object identification. This method can tran-
scend conceptual learning and has ability to learn more complex
knowledge [7]. DL has been applied successfully in prediction
tasks, natural language processing, object detection, and motion
modeling. As traffic flow prediction is of complexity in nature,
deep learning algorithms can be used to represent traffic features
without prior knowledge, which exhibits good performance for
traffic flow prediction [8].

1.2. Motivations

As a result of traffic data containing significant noise and unpre-
dictable uncertainty, the concept of data ambiguity emerges [9].
Such ambiguity imposes a great challenge on the ability to un-
derstand and predict traffic flow. First, the ability to represent
input data is limited as variables interact in uncertain ways. Sec-
ond, the convolutional neural network is not always robust when
training data are disturbed by noise. To overcome these disad-
vantages and improve the accuracy of prediction, fuzzy logic has
been introduced for solving many practical problems, including
motor control, traffic prediction, and image recognition and clas-
sification [10]. Compared with conventional deterministic repre-
sentations, fuzzy logic representation flexibly constructs rules for
reducing the uncertainties in original data and demonstrates com-
petitive performances in both data representation and robustness
for dealing with noise.

Themembership function and rule base are crucial to the design
of the fuzzy logic system. The most straightforward approach is
to define membership functions and rules in advance based on
research experience and adjust them according to test results.
Another way to design the fuzzy logic is to make the system learn
from experience. Most of the existing methods are based on the
experience of system research to directly define the membership
function and then test the output performance. If the test results
are not satisfactory, the membership function and rules should
be adjusted. This approach heavily depends on human experience
and requires human intervention. For pattern classification, the
algorithm in [11] first inputs the original data to the hidden layer
space in the DLmodel and then fuzzifies the deep representation at
the output layer of the DL model. DL exploits the brain’s cognitive
mechanism of hierarchical processing of information from layer to
layer, which is a breakthrough in machine learning. In practice,
task-driven feature learning allows knowledge to be propagated
sequentially from the lower layers to the upper layers so that an
intelligent way of automatically discovering informative features
from data is provided. Another exploration of the fuzzy logic sys-
tem is to design the membership parameters and fuzzy rules by
learning from the actual data [12,13].

Large-scale traffic flow data is complex, which is mainly af-
fected by three complex factors: spatial dependencies, tempo-
ral dependencies, and external factors. Given the uncertainty of
these factors, traffic flow prediction becomes quite challenging.
Thus, various methods have been proposed for traffic flow pre-
diction [12,14]. From a data representation perspective, no-fuzzy
and fuzzy methods are used. From a model structure perspective,
shallow and deep methods are proposed. Zhang et al. designed an
end-to-end structure of ST-ResNet based on the unique properties
of spatial–temporal data [15]. This structure employs the frame-
work of the residual networks to model the temporal closeness,
period, and trend properties of traffic flow. The proposed method
integrates the residual network and convolutional network with
traffic flow and external factors to predict traffic flow in each
region. However, the fuzzymethod can be introduced to DL, which
can further reduce the effect of data uncertainty on system perfor-
mance.

1.3. Our contributions

In this study, we focus on traffic flow prediction of spatial–
temporal data with uncertainty to improve the accuracy of pre-
diction by integrating fuzzy logic and deep learning. The FDCN
approach is proposed for traffic flow prediction. The proposed ap-
proach constructs the FDCNmodel, which integrates DLwith fuzzy
representation to alleviate the limitations of shallow methods in
traffic flow prediction. Then, the FDCNmodel is trained in a layered
manner to learn general features of traffic flow. In this model,
the fuzzy rules are adaptively learned, and the spatial as well as
temporal correlations of traffic flow are inherently considered. In
addition, the proposed approach demonstrates good performance
for traffic flow prediction. The contributions of this study are as
follows:

(1) A fuzzy deep-learning approach called FDCN is proposed for
traffic flow prediction. The FDCN approach integrates the fuzzy
theory with the deep residual network and the fuzzy rules are
generated adaptively using the learning algorithm. It explores the
fuzzy aswell as deep representations to construct features of traffic
flow while relatively solving the problem of uncertainty.

(2) A model of the fuzzy deep convolution network is designed
for traffic flow prediction, which employs tensor data representa-
tion to investigate temporal and spatial properties of traffic flow.
The optimized structure of the FDCN is obtained by exploring the
number of layers in the model and the regression functions. The
FDCN exhibits powerful prediction capability.

(3) The proposed approach is evaluated on the real Beijing
taxicab trajectory data set. The results validate the performance of
the proposed method compared with state-of-the-art methods.

The rest of this paper is organized as follows. Section 2 reviews
related work. Section 3 presents preliminaries. Section 4 proposes
an FDCN model and its learning algorithm. Section 5 discusses
experimental results. Section 6 concludes this study and provides
direction for future research.

2. Related work

An efficient algorithm to predict traffic flow is crucial for trav-
elers when they are planning their travel. As early as the 1970s,
the autoregressive integrated moving average (ARIMA) model was
designed for short-term freeway traffic-flow prediction [16]. Since
then, many studies have investigated traffic flow prediction. These
approaches can be classified into three categories: parametric,
nonparametric, and hybrid approaches [17]. The parameter tech-
niques are ARIMA-based models and Kalman-filtering models,
which are based on time-series approaches [18]. Kong et al. used
one parameter (i.e., velocity) to efficiently predict traffic state, in
which information is collected by the global positioning system
(GPS) and the curve-fitting and vehicle-tracking mechanism is
used [19]. Because of the complexity of the traffic network, how-
ever, traffic flow shows a stochastic and nonlinear quality. Time-
series approaches tend to be inefficient in predicting traffic flow as
well.

Research has paidmuch attention to nonparametric approaches
from the perspective of the traffic network. The widely used non-
parametric approaches include k-nearest neighbor (k-NN) meth-
ods, the Bayesian network approach, the online learning weighted
support vector regression (SVR), and artificial neural networks
(ANNs) [20–23]. Chang et al. presented a dynamic multi-interval
traffic volume model, which is based on the k-NN non-parametric
regression (KNN-NPR) [20]. Kumar et al. proposed a Bayesian
network approach for traffic flow forecasting [21]. Jeong et al.
presented an online learning weighted support-vector regression
method for short-term traffic flow predictions [22]. Kumar et al.
applied the artificial neural network (ANN) model for short term
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prediction of traffic flow, in which traffic volume, speed, density,
time, and day of week are incorporated as input variables [23].
The ANN training algorithm suffers from the problem of local
minima, in which one hidden layer is insufficient to describe the
complex relations between the inputs and the outputs of the traffic
prediction model.

To obtain adaptive models, some studies explore the hybrid
approach, which combines several techniques. Su et al. proposed
a hybrid traffic flow prediction model, in which the genetic algo-
rithm (GA) was used to optimize the input parameters and the
support vector machine was used to update the parameters of
the prediction function [24]. Hong et al. presented an SVR model,
in which a Genetic algorithm was combined with simulated an-
nealing to obtain the suitable parameters of Gaussian Radial Basis
Function (RBF) accurately for traffic flow prediction [25]. Dunne
et al. took advantage of an ANN structure with adaptive learning
strategies to complete a regime-based traffic state prediction [26].
Min et al. proposed a scalablemultivariate spatial–temporalmodel
for predicting the traffic volume and speed jointly [27]. Although
the aforementioned hybrid methods are adaptive, it is difficult to
say that onemethod is superior to anothermethod in any situation.
One reason for this difficulty is that the proposed methods are
developed with a small amount of data, as opposed to big traffic
data. Moreover, the accuracy of traffic flow prediction depends
on features embedded in the spatial–temporal traffic data and
external factors.

Deep learning has attracted research in the domain of traffic
state prediction [4,8,12,28]. Huang et al. proposed a deep structure
for traffic flow prediction, which consisted of two parts, that is,
a deep belief network (DBN) at the bottom and a multitask re-
gression layer on the top [28]. Lv et al. proposed a stacked auto-
encoder (SAE) model to learn traffic flow features for prediction, in
which the logic regression predictor was added on the top layer
and the model was trained in a greedy layer-wise manner [8].
Koesdwiady et al. proposed a holistic deep architecture to improve
traffic flow prediction, in which DBNs were used for traffic and
weather prediction and a correlation betweenweather parameters
and traffic flow was investigated [4].

The uncertainty of traffic data has constantly been the focus of
research. To address such a problem, the fuzzymethod has been in-
troduced [29–31]. Pongpaibool et al. designed a traffic congestion
estimation system using a manually tuned fuzzy logic [29]. Zhang
et al. proposed a fuzzy traffic congestion predictionmethod, which
combined the GA with a hierarchical fuzzy system to optimize
the rule base for accurate prediction [30]. Shankar et al. presented
the fuzzy inference system utilizing traffic density and speed in-
formation to evaluate the level of road traffic congestion [31].
Meanwhile, the experimental results showed that the fuzzy sys-
tem was an effective method for data presentation in traffic state
estimation and prediction. However, the membership functions or
fuzzy logic rules are chosen subjectively in these methods, and
intelligent learning in the fuzzy system for traffic flow prediction
remains unsolved. In this study, we present a fuzzy deep-learning
approach to solve the challenge of uncertainty in large-scale traffic
flow prediction. We aim to achieve accuracy performance of the
system by using the fuzzy DL learning method with the optimized
structure.

3. Preliminaries

3.1. Fuzzy logic representation

The fuzzy logic representation is the knowledge representation
based on fuzzy logic, which processes uncertain information using
simple IF-THEN rules. Because of uncertainties among traffic data,
fuzzy logic has often been used in traffic flow prediction [32].

Fuzzy logic representation offers an effective solution for learning
from uncertain data. Commonly, a fuzzy system includes an input
layer, a fuzzy layer, a rules layer, and a defuzzification layer. In
the input layer of the fuzzy logic system, the nodes only pass
the input value directly to the next layer. In the fuzzy layer, the
membership function is performed for a single node, and the
output of this node should be the function value. Nodes in the
input layer are connected to membership functions, and linguist
labels are assigned to each input variable. In the rules layer, the
links between nodes are utilized to perform the matching of fuzzy
logic rules. The fuzzy logic operations, such as AND, are performed
on the rule nodes. In the defuzzification layer, the OR operation is
used tomerge the results from the rules. The rulesmust be entered
manually in the traditional fuzzy logic system. Correspondingly, a
fuzzy logic systemwith an adaptive component emerges, in which
the rules and the defuzzification process are adjusted adaptively
by supervised learning.

3.2. Deep convolutional networks

Deep convolutional networks (DCN) refer to the deep network
containing multiple layers of convolutions and the convolutional
neural network (CNN) based on classical LeNet is one of the most
commonly used DCN [7]. The CNN is built by stacking multiple
layers and consists of consecutive convolutional, nonlinear trans-
formation, pooling, and fully connected layers as well as an input
and an output, and have led to a series of breakthroughs for pre-
diction tasks. Convolution is performed at the convolutional layer
to extract features from the local neighborhood on feature maps in
the previous layer. Then the result combinedwith additive biases is
passed on to the next layer through a nonlinear activation function.
For the convolutional operation, the value of a unit in the ith feature
map in the lth layer, denoted as o(l)i , is calculated as follows:

o(l)i = w
(l)
i x(l) + b(l)i ,

wherew
(l)
i and b(l)i are the weight and the bias for the feature map i

of the lth layer in the CNN model, respectively, and x(l) is the input
of the lth layer in the CNN model. The nonlinear transformation is
performed by the activation function, represented by:

(yd)
(l)
i = g(o(l)i ),

where g is the activation function, i.e., the rectifier linear unit
(ReLU) with g(x) = max(0, x).

Deep networks naturally integrated the hierarchical features,
and many prediction tasks have also benefited from deep models
because of the significance of depth. However, an obstacle to the
network with more layers is the vanishing gradient, which ham-
pers convergence from the beginning. A solution to this problem
is to add layers as residual mapping in the CNN model, such as
residual networks [33]. The existence of this constructed solution
indicates that a deeper model should produce no higher training
error than its original counterpart. In this study, another structure
of the deep convolutional network, namely, a deep residual net-
work, is introduced.

3.3. Problem formulation

Traffic flow prediction is regarded as a critical problem for
comfortable driving. We aim to estimate the volume of traffic
flow on a road or a region in the future. Predicting traffic flow
in every region throughout a city is extremely challenging as it
is affected by temporal and spatial dependencies. For temporal
dependencies, traffic congestion may occur during morning rush
hour on weekdays and may affect traffic at subsequent times. For
spatial dependencies, we partition a city into an I × J grid map
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Fig. 1. FDCN model for traffic flow prediction.

in terms of the longitude and latitude, and the inflow of a region
is affected by the outflow of its adjacent regions. We denote the
attribute values of traffic flow in a city as a tensor X ∈ RT×K×I×J ,
where T , K , I and J are the time, flow, longitude, and latitude
dimensions, respectively. Particularly, traffic flow at time t can
be represented by Xt=RK×I×J for a dynamic system over spatial
regions I × J . Thus, this study addresses the traffic flow prediction
in a region with spatial–temporal characteristics and external in-
fluence factors, and the problem is formulated as follows:

Problem 1. Given a sequence {Xt |t = 1, 2, . . . , n− 1} of observed
traffic flow data, predict Xn.

4. Fuzzy deep convolutional network and its learning algo-
rithm

In this section, we explain the proposed FDCN methodologies,
including the model design and the learning algorithm.

4.1. Fuzzy deep convolutional network model

The proposed FDCN approach for traffic flow prediction is based
on the FDCNmodel, as illustrated in Fig. 1. The FDCNmodel consists
of five modules: the input, the deep convolution network (DCN),
the fuzzy network (FN), fusion, and the predictor. Initially, input
data flows through the following two channels: one is the FN for
fuzzy representation and the other is the DCN for neural repre-
sentation. After these two modules process the data, the results
of each epoch from the FN and the DCN are merged to the fusion
module. At this point, the nodes in the fusionmodulemay perform
two operation modes: down-up transmission and up-down trans-
mission. The down-up transmission mode should further transmit
the fusion result to the predictor, and the up-down transmission
mode may calculate the value of the loss function for tuning the
parameters in the next step. In the training phase of the FDCN,
parameters of themodel can be updated repeatedly byminimizing
the value of the loss function. Once the model is trained, the
predicted result can be obtained by inputting the data into the
model.

The structure of the FN is illustrated in Fig. 2. Each node in
the input layer is connected with the fuzzification layer, and the
membership function is used to calculate the degree that an input

Fig. 2. Fuzzy representation and FN for traffic flow prediction.

node belongs to a certain fuzzy set. It is crucial, however, to deter-
mine the membership function in a fuzzy network. The Gaussian
membership function is used in the FDCN as follows:

ui = e−(xi−µi)2/σ2
i , ∀i, (1)

where µi is the mean, and σ 2
i is the variance. In the layer of

AND/OR operations, AND is one of the most commonly used fuzzy
operations, denoted as follows:

(yf )
(l)
i =

n∏
j=1

uj = min{u1, u2..., un}, (2)

where n is the number of nodes on the (l − 1)th fuzzy layer that
connect to node i. The OR operations are utilized to perform the
matching of fuzzy logic rules by the links between nodes. The
output of the fusion layer’s nodes is integrated with the results of
the DCN part to adjust the fuzzy rules adaptively.

In the DCN part, the deep residual structure is used because the
effectiveness of training is subject to the depth of the DCN model.
Note that, the fuzzy deep neural network in [12] uses the structure
of deep neural network for data classification. For convenience,
the model with the fuzzy representation and the CNN structure
is denoted as FCNN. In this study, the deep structure with the
residual network framework is used for prediction tasks because
it has been demonstrated to be quite effective for training a very
deep network [33]. The core idea of the residual learning is to learn
the additive residual function g with respect to the input of the
kth residual unit (ResU) X (k). Formally, a residual unit is defined as
follows:

X (k+1)
= X (k)

+ g(X (k)), (3)

where X (k) and X (k+1) are the input and the output of the kth resid-
ual unit, respectively, and g is a residual function. Fig. 3 illustrates
the DCN structure with the residual unit that is composed of two
convolutions and two nonlinear transformations.

For a spatial–temporal prediction problem, the input may be a
long sequence of observation, whose spatial–temporal properties
can be challenging to learn. In the DCN part, one convolutional
layer can commendably describe near dependency in spatial re-
gions, and a stack of convolutional layers can capturemuch greater
spatial dependency. Thus, the proposed FDCN model explores the
temporal and spatial properties of traffic flow for accurate predic-
tion.

4.2. Learning algorithm of the FDCN

The FDCN method explores the fuzzy representation and deep
learning to reduce the uncertainty of traffic data. Such multimodal
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Fig. 3. Deep representation and the DCN for traffic flow prediction.

learning ensures extracting features from various perspectives to
capture the complex structure and high-level features of data
for prediction [34]. After the whole network structure is estab-
lished, and the network then enters the learning phase-namely,
adjusting the parameters of the membership functions, weights
of the connection and biases. In the FDCN model, we combine
fuzzy representation and DL to improve the performance of traffic
flow prediction. Thus, the fusion layer adopts a densely connected
fusion approach, which is calculated by

x(l+1)
i = (wd)

(l+1)
i (yd)(l) + (wf )

(l+1)
i (yf )(l) + b(l+1)

i , (4)

where yd is the output from the deep representation part, and yf is
the output from the fuzzy representation with weights wd and wf ,
respectively. Then, the fusion result at the fusion layer is deeply
transformed by the nonlinear function. The predicted value at the
tth time interval, denoted as ŷt , is defined as follows:

ŷt = g(x(l+1)
i ) =

1 − e−2x(l+1)
i

1 + e−2x(l+1)
i

, (5)

where x(l+1)
i is the fusion result from the neural representation and

the fuzzy representation, and g is the hyperbolic tangent (tanh) ac-
tivation function. The tanh transformation ensures that the output
values are between -1 and 1, that is, close to the normalized input
values.

The FDCN model can be trained to predict traffic flow from
the input sequence data by minimizing the mean squared error
between the predicted value and the true value. The reconstructed
error is defined as follows:

L(θ ) =
yt − ŷt

2
2 , (6)

where yt is the observed value, ŷt is the predicted value, and θ
represents all learnable parameters in the FDCN model.

Before prediction, the FDCN model needs to be trained by
parameter initialization and fine-tuning. Better initialization may
contribute to the convergence of the neural network to a good
local minimum more efficiently. In the FDCN model, parameter

initialization includes that of both the FN and the DCN parts. For
simplicity, the weights w between all layers in the DCN part are
randomly initialized according to the uniform distribution rule:

(wd)
(l)
i ∼ U

[
−

1
√
n(l−1)

,
1

√
n(l−1)

]
,

in which n(l−1) is the number of nodes on the (l − 1)th layer con-
nected to node i in the lth layer. The bias b for all nodes is initialized
as zero. For the fusion layer, the number of nodes is the total
number of nodes on the last layer of both the FN and DCN parts. In
the FN part of FDCN, parameters that need to be initialized include
the weights between layers, as well as the mean value µi and the
variance σ 2

i of the membership function. The weights between the
‘‘fuzzification’’ layer and the ‘‘AND/OR operations’’ layer are set to
1. The parameter µi is initialized by the statistical method, and σ 2

i
can be determined on the basis of the mean value [35].

When all parts of the FDCN model are well initialized, we can
fine-tune parameters in a task-driven manner. To adjust the pa-
rameters precisely, the FDCNmodel is trained by back propagation
and the Adam algorithm. The Adam algorithm is suitable for large
data sets and high-dimension space as well as most non-convex
optimization [36]. The process of updating parameters is described
as follows:

(1) Compute the gradient bt of parameters according to Eq. (6),

bt =
∂L(θ )
∂θ (l) =

∑
n

∂L(θ )

∂y(l)i
·
∂y(l)i
∂x(l)i

·
∂x(l)i
∂θ (l) , (7)

where L(θ ) is the reconstruct error function defined in Eq. (6), θ
represents the general parameter set in the FDCN model. The first
item in Eq. (7) is the back-propagation term, and the last two terms
are derived by the activation function and the output y(l)i of the
neuron.

(2) Update a biased first moment estimate and a biased second
raw moment estimate according to Eqs. (8) and (9), respectively:

mt = β1 · mt−1 + (1 − β1)bt , (8)

and

vt = β2 · vt−1 + (1 − β2)b2t , (9)

where β1 and β2 are the exponential decay rates for the first and
second moment estimates, respectively; mt−1 is the first moment
vector, and vt is the second rawmoment vector. Generally,m0 and
v0 are initialized at zero, and β1, β2 ∈ [0, 1).

(3) Compute a bias-corrected first moment estimate and a
second raw moment estimate according to Eqs. (10) and (11),
respectively:

m̂t = mt/(1 − β t
1
), (10)

and

v̂t = vt/(1 − β t
2
), (11)

where mt and vt are the first moment vector and the second raw
moment vector in Eqs. (8) and (9), respectively.

(4) Update parameters according to Eq. (12):

θt = θt−1 − α · m̂t/(
√

v̂t + ε), (12)

where θt−1 represents the value of parameters at time t−1,α is the
learning rate, and ε is the constant 10−8. In the FDCN model, the
parameter set is θ = {W , b, µ, σ }. According to the suggestions
in [37], we empirically set the learning rate to 0.0002.

After parameter initialization, the model is pre-trained by fine-
tuning and a learnable model can be obtained for traffic flow pre-
diction. The training algorithm of the FDCN model is summarized
as Algorithm 1. The core details are explained as follows:
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(1) In Line 1, the structure of the FDCN model is constructed,
which contains the DCN module and the FN module.

(2) In Line 2, the parameters in the FDCN model are initialized
as mentioned in Section 4.

(3) In Lines 3–9, the FDCN model is trained until the stopping
criteria is met. The training process includes two phase: forward
learning and backward propagation.

(4) In Line 5, forward learning is performed to get a predicted
value. In the forward learning phase, the preprocessed data is
firstly input into the model, and follows the FN module for fuzzy
representation and the DCN module for deep learning, respec-
tively. Then, the results from these two modules are fused using
Eq. (4). Finally, the fusion result is transformed using Eq. (5) and
the predicted value is obtained.

(5) In Lines 6–8, backward propagation is done and the param-
eters are fine-tuned using the Adam algorithm. In the backward
propagation phase, the reconstructed error L(θ ) is computed using
Eqs. (6), and the parameters are updated according to Eqs. (7)–(12).
The objective of fine-tuning the FDCN model is to minimize the
error in Eq. (6).

(6) In Line 9, the training process ends when the stopping
criteria is met. The stopping criteria includes the early stopping
strategy and the maximum number of epochs. Once the training
is completed, a well-trained model is obtained.

Algorithm 1 Training of the FDCN
Input: Given training samples and their labels D = {X0, ..., Xn−1}.
Output: The FDCN model (W , b, µ, σ )
1: Construct the FDCN model shown in Fig. 1;
2: Initialize the parameters θ= {W , b, µ, σ } and the learning rate α, as mentioned in

Section 4;
3: repeat
4: Randomly select a batch of instances Db from D;
5: Forward learn training samples through the FDCN using Eqs. (1)-(5);
6: Compute the error L(θ ) using Eq. (6);
7: Back-propagate the error through the FDCN and update the parameters according

to Eqs. (7)-(12);
8: Find θ by minimizing the objective (6) with Db;
9: until Stopping criteria is met;
10: Return M(W , b, µ, σ ).

5. Experimental verification

This section presents performance comparisons of the FDCN
algorithm with ARIMA [17], DeepST [15], CNN [37], FCNN, and
FDCN in the similar application scenarios, in which the proposed
approach demonstrates effectiveness and merit in comparison
with existing approaches.

5.1. Settings

We implemented ourmethod in Pythonwith Keras and Tensor-
flow libraries. The experiments are conducted on a 64-b Ubuntu
platform with an Intel Core i9 3.3 GHz CPU, NVIDIA TITAN XP
12G and 48 GB memory on the TaxiBJ data set. A GPU-accelerated
library for deep neural network cuDNN is used, which provides
highly tuned implementations for forward and backward convo-
lution, pooling, normalization and activation layers.

The TaxiBJ data set is trajectory data from Beijing taxicab GPS,
including four time intervals: 1 July 2013 to 30 October 2013, 1
March 2014 to 30 June 2014, 1 March 2015 to 30 June 2015, 1
November 2015 to 10 April 2016. We obtained multi-attribute
data sampling every 30 min on a grid map and obtained 48 sam-
ples per day. The features of these data are expressed as input
flow, output flow, time information and external factors (holiday,
weather, temperature, accident, etc.). After obtaining the original
data, incomplete data needs to be removed. We considered data
per day whose sample size was less than 48 to be incomplete.
To scale the data into the range of −1 and 1, we normalized the

Fig. 4. Typical traffic flow pattern in a week.

Fig. 5. The input traffic flow of the entire Beijing city at 8 a.m. in one day.

data. The split of the testing data set and the training data set is
done using the cross-entropy validation method. In the evaluation
phase, the predicted value is re-scaled back to the normal values.
Assume that the historical data X t−1, X t−2 . . . , X t−r on 32 × 32
grid regions with the in and out flows are given. For the prediction
tasks of traffic flow, we have three dimensional data with a size of
2×32×32 as the input; the output is similar. Fig. 4 depicts typical
input and output traffic flow patterns of a region over time in a
week. As illustrated in Fig. 4, it is observed that traffic congestion
may occur at eight in the morning and at noon. Figs. 5–8 show the
input and output traffic flows of the entire city of Beijing at these
two times. In the Figures, the X axis and the Y axis represent the
row and the column of an I × J grid map, respectively. The Z axis
represents the traffic flow that has been normalized. The larger the
value of the Z axis is, the greater the traffic flow is. From these four
figures, we can see that high traffic flow appears in the center of
the city, whereas the low traffic flow is on the edge of the city. In
addition, traffic congestion is more prone to happen at noon than
at eight in the morning.

To confirm the effectiveness of ourmodels, the experiments are
conducted to compare the proposedmethodwith four baselines as
follows. The ARIMA method is a general prediction method based
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Fig. 6. The output traffic flow of the entire Beijing city at 8 a.m. in one day.

Fig. 7. The input traffic flow of the entire Beijing city at 12 a.m. in one day.

Fig. 8. The output traffic flow of the entire Beijing city at 12 a.m. in one day.

on time series data. The in-flow/out-flow of taxis in our scenarios
is a time series, thus it can be predicted by the ARIMA. The DeepST

method is a DNN-based prediction model for spatial–temporal
data,which combines the closeness featurewith the period and the
trend features to predict crowd flows with state-of-the-art results.
The CNN method is a prediction method using the CNN model,
which stacks multiple layers of the convolutional layer and the
activation layer. The FCNN method is a prediction method based
on the Gaussian fuzzy theory and CNN. The FDCN method is our
proposed method in this study, in which the fuzzy representation
and the residual network model are used.

5.2. Evaluation metric

To evaluate the effectiveness of the proposed model, we use
three performance indexes: the mean absolute error (MAE), the
mean relative error (MRE), and the rootmean square error (RMSE).
These indexes are defined as follows:

MAE=
1
m

m∑
i=1

⏐⏐yi − ŷi
⏐⏐ ,

MRE=
1
m

m∑
i=1

⏐⏐yi − ŷi
⏐⏐

yi
,

RMSE=[
1
m

m∑
i=1

(yi − ŷi)2]
1
2 ,

where yi and ŷi are the observed value and the predicted value,
respectively, andm is the number of all predicted values.

5.3. Experimental results

The experimental results are mainly discussed from three per-
spectives. First, we verified the convergence of the FCNN and
the FDCN model on the TaxiBJ data set. Then, we discussed the
optimized structure of the FDCN model by analyzing effects of
design factors. Furthermore, we compared the performance of
the proposed FDCN model with the ARIMA method, the DeepST
method, the CNN method and the FCNN method.

5.3.1. Convergence analysis
To gain insight into the convergence of FDCN,weprovide details

of the learning process. In the experiments, we performed the
parameter initialization as explained in Section 4. The prediction
task is set to one-step prediction for FDCN and FCNN models
with 16 convolution layers. The mini-batch learning scheme with
48 samples in each batch is employed to speed up the training
processes. One epoch means one learning process over all training
samples, and all parameters are updated one time after each mini-
batch is finished. The early stopping strategy is used to train the
FDCN for 30 epochs. The curve of the RMSE with respect to the
number of epochs is provided in Fig. 9. From the curve in Fig. 9,
it can be observed that the curve flattens as the number of training
epochs increases. This indicates the convergence of FDCN and
FCNN. In addition, the FDCN model produces less RMSE than the
FCNN model, that is, the FDCN model can learn the representation
of the TaxiBJ data better than the FCNN model. The whole FDCN
model is non-convex, and the converged point may be one of the
expected local optima.

5.3.2. Effects of design factors
In the design of the optimized structure of the FDCNmodel, the

considered factors included the number of layers (i.e., the number
of convolutional layers) and the regression functions.

The number of layers in the FDCN model depends on the num-
ber of stacked residual units, which is a significant design factor in
this study. Generally, the accuracy rate can be improved by more
layers in the prediction model as the computation time increases.
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Fig. 9. Learning processes of the FDCN and the FCNN on the TaxiBJ data set.

It is crucial to find the tradeoff between the performance and the
computing cost. This experiment investigated the performance of
the FDCN with a varying number of layers for traffic flow predic-
tion. In addition, we compared the proposed FDCN method with
the CNN model, the FCNN model, and the DeepST model. Among
these four competition models, each had a deep structure and
could be applied to the traffic flowprediction scenarios. In all cases,
we used the same data set. At the top of the model, we used the
tanh function for regression.

In Table 1, we can find that the RMSE of the FDCN decreased as
the increase of the number of model layers increased. In the same
scale of layers, the FDCN had the lower RMSE than the DeepST and
the CNN. In addition, the RMSE of the 20-layer FDCN was 0.3037,
which was 98% less than the RMSE of the 20-layer and 24-layer
DeepST.When the number of layers in themodelwas nomore than
10, the FCNN obtained the lower values of RMSE andMRE than the
FDCN. Nevertheless, the performance of the FDCNwas significantly
better than the FCNN when the number of layers was greater than
10. When the number of layers increased to 20, the FDCN model
obtained the best performancewith an RMSE of 0.3037 and anMRE
of 0.2045. The average accuracy (1-MRE) of 79.55% using the 20-
layer FDCN was roughly equivalent to that of the DeepST model
with a layer number of 24; this indicated that the FDCN model
could obtain goodperformancewith fewer layers,which simplified
the model structure. Such results indicated that the FDCN was
more efficient than state-of-the-art deep models.

With regard to the regression functions at the top of the FDCN
model, the tanh function has been used commonly in recent years,
along with the conventional sigmoid function and the softmax
function [7]. This experiment is conducted to compare the root
mean square error of the FDCN approach using different regression
functions. We set the regression function of the FDCN model as
the tanh function, the sigmoid function and the softmax function,
respectively. As illustrated in Fig. 10, the FDCNmodelwith the tanh
function obtained the lowest RMSE among these three regression
functions. Such results indicated that the FDCN using the tanh
regression function prompted the predicted value to be closer to
the observation.

5.3.3. Multi-step ahead prediction
This experiment is conducted to compare the predicted values

of traffic flow using the proposed FDCN method to the observed
values for different levels of traffic flow load. The results are il-
lustrated in Figs. 11–13, where the observed traffic flow is also
included for comparison. In Figs. 11–13, we observed that the

Fig. 10. The RMSE of the FDCN with different regression functions.

Fig. 11. Predicted input and output traffic flows with low traffic volumes.

pattern of the predicted traffic flow was similar to that of the
observed traffic flow. In addition, the proposedmethod performed
well in high andmedium traffic flow conditions. However, thiswas
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Table 1
Performance comparisons of the four model with variant layers.

Layers DeepST CNN FCNN FDCN

RMSE MRE MAE RMSE MRE MAE RMSE MRE MAE RMSE MRE MAE

2 23.3604 0.2313 0.0230 23.3545 0.2322 0.0230 0.4245 0.2318 0.0229 2.2168 0.3603 0.0224
4 22.3530 0.2265 0.0186 20.5218 0.2088 0.0187 0.3867 0.2226 0.0211 2.1143 0.3688 0.0502
6 21.9253 0.2173 0.0183 19.9466 0.2146 0.0182 0.3336 0.2184 0.0192 1.7866 0.3726 0.0466
8 21.1351 0.2165 0.0202 21.5762 0.2341 0.0204 0.4319 0.2615 0.0227 1.1898 0.3266 0.0369

10 20.2035 0.2038 0.0187 138.9365 0.8799 0.1430 0.3476 0.2253 0.0197 1.6327 0.3810 0.0414
12 19.8306 0.2115 0.0182 147.0983 0.9745 0.1429 16.7581 1 0.1430 0.6996 0.3188 0.0305
14 21.6321 0.2363 0.0205 147.1442 1 0.1430 16.7581 1 0.1430 0.3336 0.2288 0.0203
16 19.0306 0.1944 0.0173 147.1442 1 0.1430 16.7581 1 0.1430 0.4336 0.2498 0.0231
18 20.5252 0.2067 0.1780 147.1061 1 0.1430 16.7581 1 0.1430 0.3195 0.2188 0.0188
20 19.8368 0.2110 0.0181 147.1442 1 0.1430 16.7581 1 0.1430 0.3037 0.2045 0.0182
22 19.8109 0.2125 0.0182 147.1442 1 0.1430 16.7581 1 0.1430 16.7576 0.9993 0.1430
24 19.4921 0.2045 0.0177 147.1442 1 0.1430 16.7581 1 0.1430 0.3039 0.2206 0.0178

Fig. 12. Predicted input and output traffic flows with medium traffic volumes.

not the case in low traffic flow conditions. The main reason for
this was that a large relative error may have occurred when the
traffic flow rate was small. In fact, we paid more attention to the
condition of medium and high traffic flow. Hence, the proposed
method effectively predicted traffic flow in practice.

To further verify the performance, the experiment is conducted
to compare the RMSE of fivemethods (i.e., the ARIMA, the CNN, the

Fig. 13. Predicted input and output traffic flows with high traffic volumes.

FCNN, the DeepST and the FDCN) for a varying number of predic-
tion steps. In this study, we use the proposed method to predict
30min traffic flow, 60min traffic flow, and so on. In themulti-step
forward prediction, historical and recently predicted data could
be used to predict traffic flow in subsequent time intervals. The
number of prediction steps was set from 1 to 12, and the interval
of each stepwas 30min. The optimized structure of themodelswas
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Fig. 14. The RMSE for multi-step ahead prediction.

employed. According to Table 1, we selected the 2-layer CNN, the
2-layer FCNN, the 14-layer FDCN and the 14-layer DeepST models
as the optimization structures to compare multi-step ahead traffic
flow prediction.

Fig. 14 illustrates the results of traffic flowprediction for varying
steps. As can be seen in Fig. 14, the RMSE as a whole indicated
an upward trend with an increase in the number of steps. For the
30 min prediction, the value of the RMSE using the FDCN was
0.3336, which was 1.4% of the RMSE using the DeepST method.
In addition, the prediction performance of the FDCN method was
relatively stationary over a short period of time. This phenomenon
implied that the proposed FDCN method could predict traffic flow
more accurately than its competition methods and obtained im-
proved prediction performance when compared with the ARIMA,
DeepST, CNN and FCNN methods.

6. Conclusions

In the current study, we developed the FDCN model to predict
traffic flow. The proposed method incorporated the fuzzy method
and the deep residual convolution network to extract features
for more accurate traffic flow prediction. We evaluated the FDCN
model on the data set TaxiBJ, and verified performances of the
FDCN. Experimental results indicated that the FDCN method was
more powerful in its representation capability than existing meth-
ods. The FDCN has many open problems, including the optimized
structure of the model and the influence of external factors on
predictive performance. In the future, it will be interesting to
consider reinforcement learning with a variety of external factors
in traffic flow prediction.
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