

Deep Residual Learning for Image Recognition

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun

work done at Microsoft Research Asia

ResNet @ ILSVRC & COCO 2015 Competitions

1st places in all five main tracks

- ImageNet Classification: "Ultra-deep" 152-layer nets
- ImageNet Detection: 16% better than 2nd
- ImageNet Localization: 27% better than 2nd
- COCO Detection: 11% better than 2nd
- COCO Segmentation: 12% better than 2nd

*improvements are relative numbers

*w/other improvements & more data

Revolution of Depth

Revolution of Depth

Revolution of Depth

AlexNet, 8 layers (ILSVRC 2012) VGG, 19 layers (ILSVRC 2014) ResNet, 152 layers (ILSVRC 2015)

Is learning better networks as simple as stacking more layers?

Simply stacking layers?

- *Plain* nets: stacking 3x3 conv layers...
- 56-layer net has higher training error and test error than 20-layer net

Simply stacking layers?

- "Overly deep" plain nets have higher training error
- A general phenomenon, observed in many datasets

a deeper counterpart (34 layers)

- Richer solution space
- A deeper model should not have higher training error
- A solution *by construction*:
 - original layers: copied from a learned shallower model
 - extra layers: set as identity
 - at least the same training error
- Optimization difficulties: solvers cannot find the solution when going deeper...

Deep Residual Learning

• Plaint net

H(x) is any desired mapping,

hope the 2 weight layers fit H(x)

Deep Residual Learning

Residual net

H(x) is any desired mapping, hope the 2 weight layers fit H(x)hope the 2 weight layers fit F(x)let H(x) = F(x) + x

Deep Residual Learning

• F(x) is a residual mapping w.r.t. identity

- If identity were optimal, easy to set weights as 0
- If optimal mapping is closer to identity, easier to find small fluctuations

Network "Design"

- Keep it simple
- Our basic design (VGG-style)
 - all 3x3 conv (almost)
 - spatial size /2 => # filters x2
 - Simple design; just deep!

plain net

CIFAR-10 experiments

- Deep ResNets can be trained without difficulties
- Deeper ResNets have lower training error, and also lower test error

ImageNet experiments

- Deep ResNets can be trained without difficulties
- Deeper ResNets have lower training error, and also lower test error

ImageNet experiments

Beyond classification

A treasure from ImageNet is on learning features.

"Features matter." (quote [Girshick et al. 2014], the R-CNN paper)

task	2nd-place winner	ResNets	margin (relative)
ImageNet Localization (top-5 error)	12.0	9.0	27%
ImageNet Detection (mAP@.5)	53.6 abs	better!	16%
COCO Detection (mAP@.5:.95)	33.5	37.3	11%
COCO Segmentation (mAP@.5:.95)	25.1	28.2	12%

- Our results are all based on ResNet-101
- Our features are well transferrable

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". CVPR 2016. Shaoqing Ren, Kaiming He, Ross Girshick, & Jian Sun. "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks". NIPS 2015.

Our results on MS COCO

*the original image is from the COCO dataset

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". CVPR 2016.

Shaoqing Ren, Kaiming He, Ross Girshick, & Jian Sun. "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks". NIPS 2015.

this video is available online: https://youtu.be/WZmSMkK9VuA

Results on real video. Model trained on MS COCO w/ 80 categories. (frame-by-frame; no temporal processing)

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". arXiv 2015. Shaoqing Ren, Kaiming He, Ross Girshick, & Jian Sun. "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks". NIPS 2015.

More Visual Recognition Tasks

ResNets lead on these benchmarks (incomplete list):

- ImageNet classification, detection, localization
- MS COCO detection, segmentation
- **PASCAL VOC** detection, segmentation
- VQA challenge 2016
- Human pose estimation [Newell et al 2016]
- Depth estimation [Laina et al 2016]
- Segment proposal [Pinheiro et al 2016]

		mean	aero plane	bicycle	bird	boat	bottle	bus	car	
		-	\bigtriangledown	\sim						
►	DeepLabv2-CRF [?]	79.7	92.6	60.4	91.6	63.4	76.3	95.0	88.4	92
\triangleright	CASIA_SegResNet_CRF_COCO [?]	79.3	93.8	R	es	69.6	et	95.	8.	1
\triangleright	Adelaide_VeryDeep_FCN_VOC [7]	79.1	91.9	48.1	93.4	69.3	75.5	94.2	87.5	92
P	LRR_4x_COCO	/0./	93.2	44.2	09.4	05.4	74.9	93.9	87.0	92
\triangleright	CASIA_IVA_OASeg ^[?]	78.3	93.8	41.9	89.4	67.5	71.5	94.6	85.3	89
\triangleright	Oxford_TVG_HO_CRF [?]	77.9	92.5	59.1	90.3	70.6	74.4	92.4	84.1	88
	Adelaide Context CNN CRF COCO [?]	77.8	92.9	39.6	84.0	67.9	75.3	92.7	83.8	

PASCAL segmentation leaderboard

		mean	aero plane	bicycle	bird	boat	bottle	bus	car	cat
		-	\bigtriangledown							
►	Faster RCNN, ResNet (VOC+COCO) [?]	83.8	92.1	88.4	84.9	75.9	-71A	86.3	87.8	101
\triangleright	R-FCN, ResNet (VOC+COCO) [?]	82.0	89.5	88.3	83.	7.0	51.3	85	\$6.3	TOT
	OHEM+FRCN, VGG16, VOC+COCO	00.1	50.1	07.4	15.5	05.0	00.5	00.1	05.0	32.3
\triangleright	SSD500 VGG16 VOC + COCO ^[?]	78.7	89.1	85.7	78.9	63.3	57.0	85.3	84.1	92 .3
\triangleright	HFM_VGG16 ^[7]	77.5	88.8	85.1	76.8	64.8	61.4	85.0	84.1	90 .0
\triangleright	IFRN_07+12 ^[?]	76.6	87.8	83.9	79.0	64.5	58.9	82.2	82.0	91.4
\triangleright	ION [?]	76.4	87.5	84.7	76.8	63.8	58.3	82.6	79.0	90.9

PASCAL detection leaderboard

Potential Applications

ResNets have shown outstanding or promising results on: **Visual Recognition**

Image Generation (Pixel RNN, Neural Art, etc.)

Natural Language Processing (Very deep CNN)

Speech Recognition (preliminary results)

Advertising, user prediction

(preliminary results)

Conclusions

- Deep Residual Networks:
 - Easy to train
 - Simply gain accuracy from depth
 - Well transferrable

- Follow-up [He et al. arXiv 2016]
 - 200 layers on ImageNet, 1000 layers on CIFAR

Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Identity Mappings in Deep Residual Networks". arXiv 2016. Kaiming He, Xiangyu Zhang, Shaoqing Ren, & Jian Sun. "Deep Residual Learning for Image Recognition". CVPR 2016.

Resources

- Models and Code
 - Our ImageNet models in Caffe: <u>https://github.com/KaimingHe/deep-residual-networks</u>
- Many available implementations: (list in <u>https://github.com/KaimingHe/deep-residual-networks</u>)
 - Facebook AI Research's Torch ResNet: <u>https://github.com/facebook/fb.resnet.torch</u>
 - Torch, CIFAR-10, with ResNet-20 to ResNet-110, training code, and curves: code
 - Lasagne, CIFAR-10, with ResNet-32 and ResNet-56 and training code: code
 - Neon, CIFAR-10, with pre-trained ResNet-32 to ResNet-110 models, training code, and curves: code
 - Torch, MNIST, 100 layers: blog, code
 - A winning entry in Kaggle's right whale recognition challenge: blog, code
 - Neon, Place2 (mini), 40 layers: blog, code
 - •