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Abstract—As devices in the Internet of Things (IoT) increase
in number and integrate with everyday lives, large amounts of
personal information will be generated. With multiple discovered
vulnerabilities in current IoT networks, a malicious attacker
might be able to get access to and misuse this personal data.
Thus, a logger that stores this information securely would make
it possible to perform forensic analysis in case of such attacks
that target valuable data. In this paper, we propose LogSafe,
a scalable, fault-tolerant logger that leverages the use of Intel
Software Guard Extensions (SGX) to store logs from IoT devices
efficiently and securely. Using the security guarantees of SGX,
LogSafe is designed to run on an untrusted cloud infrastructure
and satisfies Confidentiality, Integrity, and Availability (CIA)
security properties. Finally, we provide an exhaustive evaluation
of LogSafe in order to demonstrate that it is capable of handling
logs from a large number of IoT devices and at a very high data
transmission rate.

I. INTRODUCTION

With the sharp increase in popularity and use of the Internet

of Things (IoT), these devices are bound to accumulate exten-

sive information about users and their activities. The diverse

and ad-hoc nature of IoT networks, however, raises concerns

both about the privacy and security of the collected data.

As shown in several cases, it is possible to uncover private

information (e.g., living habits and home addresses) from

IoT data through simple appliances such as Nest thermostats

[1] and Sharx security cameras [2]. Moreover, IoT devices

themselves are vulnerable to various cyber-physical attacks

as they are deployed without proper security measures (e.g.,

Mirai botnet attack [3], SSHowDowN proxy attacks [4]).

As securing all IoT devices is not feasible, it is essential

to be able to perform forensic analysis on the IoT data. Such

analysis would ensure both that IoT data is managed securely

and that attacks on IoT devices are detected and addressed.

A necessary condition for such accurate forensics is secure

data collection, from a potentially large number of devices,

in a tamper-evident and fault-tolerant fashion. In particular,

end-to-end security guarantees must be provided, beginning

from the communication protocol and ending with secure data

storage that provides defenses against unauthorized accesses

and attacks. Therefore, this paper addresses the problem of

designing a secure and scalable logger for IoT devices.

To support large-scale data logging, cloud service providers

such as Amazon, Google, IBM, and Microsoft have emerged

as services that allow users of IoT devices to store and manage

their data on a cloud infrastructure. The ease of use and

integration with other well-known computation and storage

services on the same platform is one of the best selling points

for these providers. However, there have been several recent

security breaches on online services such as Yahoo [5], Ashley

Madison [6], and Equifax [7] that potentially affect hundreds

of millions of users. Moreover, for proprietary reasons, the

precise architecture of these commercial services is not known,

which makes it difficult to evaluate their security guarantees.

Without using cloud services, users can choose to deploy

logging infrastructure themselves and adequately manage their

services. This approach poses the challenge of scalability

as administrating a large-scale system needs corresponding

resources and expertise. In addition, users can only benefit

from running their own infrastructure if the security guarantees

are equal or better than cloud services, which are not usually

available for the regular consumers (e.g., controlled physical

access).

To leverage the advantages of both approaches, namely use

the cloud infrastructure but also maintain control of the sys-

tem’s security, we propose LogSafe, a scalable, fault-tolerant

logger that provides secure storage of IoT data. Designed to

run on the cloud infrastructure, LogSafe is a decentralized

logging architecture using Intel Software Guard Extensions

(SGX) and standard industrial protocols to guarantee tamper-

resilience. SGX is a set of new instructions and memory access

changes in Intel architecture design that allows the creation

of an enclave, a trusted and isolated execution environment.

Enclaves enable applications to maintain confidentiality even

when an attacker has physical control of the host machine.

Therefore, users can utilize cloud service provider infrastruc-

ture and services without worrying about the security and

privacy of recorded data. LogSafe also provides the capability

to perform online computation on logged data while preserving

privacy, e.g., for the purpose of audit or attack detection.

The secure logger presented in this paper is required to

satisfy the Confidentiality, Integrity, and Availability (CIA)

model, a widely adopted model for assessing the security prop-

erties of a given system. Building such a logger in a distributed

fashion on the cloud presents several challenges. LogSafe

employs Transport Layer Security (TLS) with hashchaining

logging scheme [8] and digital signature scheme to guarantee

confidentiality and integrity properties. However, even with

hashchaining, integrity can be still violated by a replay attack,

where an eavesdropper gets a copy of legitimate stored data



and at a later time overwrites the current data.

In order to defend against replay attacks, we use the SGX

physical monotonic counter to maintain the latest system

state as a trusted platform storage. As shown in Section VI,

monotonic counter operations are computationally costly and

can significantly reduce the system performance if frequently

used. To deal with this challenge, we introduce a snapshot

algorithm utilizing the SGX counter to defend against replay

attacks without compromising the scalability and performance

of the system. Specifically, LogSafe uses a fast, secure in-

memory counter for node run-time verification and the slower,

permanent counter for long-term verification. This combina-

tion allows logged data to be verified at any time regardless

of system topology changes.

Availability presents its own challenges that arise due to

communication overhead (e.g., encryption, gossip protocol)

and computation overhead (e.g., cryptographic operations).

LogSafe minimizes the performance hit by employing a dis-

tributed architecture with decentralized SGX-enabled nodes

that can quickly scale up to support a large number of IoT

devices. Nodes are organized in a fault-tolerant ring structure

(where each node is backed-up by one or two other nodes),

and each IoT device is mapped to a specific node based on

a consistent hashing algorithm. Finally, note that availability

can also be violated by a distributed denial-of-service (DDoS)

attack – defending against DDoS attacks is an active area of

research, so we leave addressing this problem for future work;

at the same time, we note that the fault-tolerant architecture of

LogSafe ensures that its operation will not be disrupted even

if some of its nodes are attacked.

To evaluate the LogSafe implementation, we first investigate

the computational overhead of establishing a secure connection

between IoT devices and LogSafe. To assess the scalability of

the design, we vary the number of nodes in the system from

one to three and observe the change in average processing time

per incoming message. Finally, we compare the performance

of LogSafe with a non-SGX implementation as well as with

previous SGX-based implementations that use a single node

[9], [10]. The results indicate that LogSafe is scalable to

support a large number of devices for fast logging with very

reasonable computation overhead.

To summarize, the contributions of this paper are three-fold:

1) the design and implementation of LogSafe, a cloud-based

secure, scalable, and fault-tolerant logger that can accommo-

date a large number of IoT devices; 2) a scalable snapshot

algorithm to defend against attacks without compromising the

logger’s performance; 3) performance evaluation of the logger

implementation to test its scalability properties.

The remainder of this paper is organized as follows. We

discuss related work in Section II. In Section III, we present

a system overview and provide the problem statement. Sec-

tion IV then discusses the design architecture of the secure

logger and explains the components of the design. We discuss

the implementation of LogSafe in Section V. Finally, we

present the experimental results of LogSafe in Section VI and

provide concluding remarks in Section VII.

II. RELATED WORK

Protecting valuable data from adversaries is an active area of

research, and there has been a significant amount of work done

on developing tamper-proof loggers for storing information.

Secure loggers can generally be classified into those that

implement security in software and assume the underlying

hardware is attack-free or the ones that implement a secure

hardware. Works that use the former design [11]–[14] rely on

published commitments to enable tamper-proof service and

require a gossip protocol for distribution, which do not scale

well in IoT environment with massive scale and spontaneous

interaction between devices. On the other hand, works that

implement the latter design [15]–[17] use the Trusted Platform

Module (TPM) [18] as a trusted computing base to guarantee

tamper-proofness. These techniques either assume an adver-

sary who cannot perform sophisticated hardware attacks (e.g.,

probing memory or launching side-channel attacks) or rely on

changing the TPM specifications to provide their guarantees.

Some recent designs [9], [19] propose the use of SGX to

defend against a stronger adversary capable of active attacks

on the system, leveraging the higher computation capability

of SGX in comparison with the previous trusted hardware

platforms. Like LogSafe, they maintain a hashchain of logging

states as a secure timeline and use SGX to provide a trusted ex-

ecution environment. Unlike LogSafe, however, these designs

are solely for a single computer deployment without fault-

tolerant guarantees. SGX-Log [19] encrypts data using SGX

sealing feature and can only be decrypted using the same pro-

cessor, which is unlikely to happen in the cloud environment.

Moreover, previous designs rely on SGX monotonic counter

(known to be very slow due to interactions with non-volatile

memory) for frequent operations, and it is challenging to scale

these approaches to the IoT space where interactions with

millions of devices might occur. LogSafe does not require

SGX monotonic counter for normal operation; it also fully

utilizes the cloud infrastructure with distributed architecture

to provide scalability and fault tolerance.

SGX has been suggested as a means to build secure systems

from an untrusted cloud in a number of works. Haven [20]

is the first system to provide a shielded environment to exe-

cute legacy Windows applications using SGX. Secure Linux

containers such as SCONE [21], Graphene-SGX [22], or

Panoply [23] can also be used to run unmodified applications

in a trusted enclave. These systems provide greater flexibility

for an application running inside the enclave at the cost

of higher overhead to encapsulate system functionalities. As

the memory available inside the enclave is limited (about

98MB with the current SGX hardware version), this overhead

will affect the scalability of the system. LogSafe is designed

with the specific logging functionality by executing only core

cryptographic operations inside the enclave and proved to be

scalable and fault-tolerant to support a high number of IoT

devices.

Other works also propose SGX for secure cloud analytics

such as VC3 [24] with secure MapReduce computations or



IRON [25] with secure functional encryption. These algo-

rithms can be used in conjunction with LogSafe to provide

multi-party analytics over logged data.

III. OVERVIEW OF THE IOT LOGGING ARCHITECTURE

This section first introduces the background of Intel SGX

and gives an overview of the proposed system with the security

properties such a system should provide. Then, it outlines the

possible attack surfaces that could affect those properties as

well as our approach to ensure that the system does provide

them.

A. Intel SGX Background

SGX was designed by Intel in order to address the problem

of executing software applications in a remote computer

owned by an untrusted party, while at the same time providing

integrity and privacy guarantees [26]. At a high level, SGX is a

set of new instructions and memory access changes in the Intel

architecture; it works by instantiating an enclave at the remote

computer for the purposes of computation and information

exchange. The enclave is essentially a secure, separated and

encrypted region for code and data are decrypted only inside

the processor.

The enclave enables applications to maintain confidentiality

even when an attacker has physical control of the platform.

Special CPU instructions, such as EENTER (to execute the

code inside the enclave) and EEXIT (to quit execution), must

be used by the enclave’s host process to interact with the

enclave, and it happens in protected mode. Exceptions are

raised when a non-enclave access to a memory is attempted

by a software, and also when a code fetch is attempted from

inside an enclave to an address range outside that enclave.

Therefore, SGX ensures that the secure regions of code and

data are able to maintain confidentiality even when an attacker

has physical control of the platform and can conduct direct

attacks on memory.

Each SGX-enabled processor is fused with a specific key

during the manufacturing process that can be used to encrypt

and integrity-protect sensitive data. To store the secret on

untrusted memory, an enclave program can call EGETKEY
instruction to derive an encryption key from the persistent

hardware-based key. This encryption key can only be retrieved

by instances of the same enclave program on the same

platform. This sealing feature ensures that sensitive data are

isolated between enclaves or even between different versions

of the same enclave program (e.g., an older vulnerable version

cannot access sealed data from a newer version).

SGX also provides a remote attestation mechanism to allow

another party to verify that the correct program is securely

running within an enclave on the remote platform. An enclave

can use the EREPORT instruction to generate an unforgeable

report containing information to verify the trustworthiness

of the enclave and the platform. The report is signed using

a private key for Intel Enhanced Privacy ID (EPID), an

anonymous group signature scheme. The party can validate

Fig. 1: The LogSafe system overview.

the report and contact Intel Attestation Server (IAS) to verify

the signature of the report.

The SGX security is formally proved in [25]. However,

SGX also has limitations, especially vulnerability against side-

channel attacks [26]–[29]. Therefore, it is the responsibility

of the enclave program implementation to defend against

side-channel attacks. Fisch et al. [25] also present different

techniques to defend against such attacks.

B. System Overview

Figure 1 shows the logger’s intended environment. LogSafe

is to be deployed in a vast IoT network that may potentially

contain a very large number of devices (ranging in the billions

according to some current estimates [30]). Since IoT devices

are generally resource constrained devices (e.g., fitness track-

ing devices, medical devices) that do not have the capacity

to perform computation-heavy operations or to store great

amounts of data, the logger’s task would be to securely store

all data generated by these devices as well as to provide a

platform to compute certain functions on the logged data (e.g.,

sensor attack detection) without revealing any information to

unauthorized entities.

Due to the unprecedented size of IoT networks, developing

and managing the infrastructure for such a logger system

would be a challenging task. That is why, in this work

we propose to leverage the existing cloud infrastructure and

augment it with the security features of SGX. In particular,

each machine on the cloud would be capable of running an

SGX enclave;1 in turn, the security guarantees provided by

SGX, namely remote attestation and secure computing, would

make it possible to securely execute code on the cloud without

exposing information to the cloud provider or the rest of the

world.

In order to exploit the full capacity of the cloud, LogSafe

is distributed as well (refer to Section IV for a description

of the specific design of the distributed logging system). This

allows us both to handle a larger number of incoming messages

and to provide an extra layer of fault/attack tolerance as

opposed to a centralized system with a single point of failure.

1This is a reasonable assumption considering that all new generations of
Intel desktop/laptop chips and some server chips are capable of running SGX.



In case a machine crashes or experiences denial of service,

LogSafe would transfer its state and responsibilities to a back-

up machine, thus ensuring the seamless execution of the entire

system.

In this framework, a single trusted authority platform (run-

ning locally) can provision an arbitrary number of SGX-

enabled nodes running on the cloud infrastructure. Once an

IoT device sends (encrypted) data to the logger node, LogSafe

verifies the authenticity of the data, encrypts it with the

provisioned encryption key and sends it to the cloud database

service (e.g., Amazon RDS) for permanent storage. This

ensures that data is only decrypted within an SGX enclave

and cannot be accessed from the outside. In a similar fashion,

LogSafe provides a platform for secure computation as well –

if a user would like to perform computation on the logged data,

an SGX enclave would retrieve the data from the database,

decrypt it and securely perform the required computation, only

returning the answer to the user (e.g., saying that no attacks

were detected).

C. Security Discussion

Due to its application domain, namely a large IoT network

that is constantly subjected to outside threats, LogSafe is

exposed to a number of attack surfaces. In this work, we

focus on building a system that satisfies the CIA model,

a standard model in the cyber security domain. We utilize

different techniques in order to (attempt to) achieve each of

the three CIA properties, as discussed below.

Confidentiality means that IoT data cannot be seen by

unauthorized entities (e.g., through an eavesdropping attack).

LogSafe attains this property by employing the TLS protocol;

TLS provides end-to-end security between the devices and

LogSafe by ensuring that messages are encrypted, hashed, and

signed. Thus, by making the standard assumptions about the

hardness of prime number factorization, we can make sure that

IoT data is only readable inside an SGX enclave.

Integrity is achieved when the data that is logged (and re-

trieved later) is the same as the data that was originally sent by

an IoT device. Integrity can be violated in systems vulnerable

to injection attacks where the attacker is able to modify the

data stored in the database. LogSafe defends against injection

attacks by using a hashchain [8] algorithm in order to ensure

that the logged data is consistent and in the right order. Even in

this case, integrity can also be violated by a variant of a replay

attack in which the attacker replaces the latest logged data with

a previous authentic snapshot – in this case the data is still

consistent but is incomplete. In order to address this issue,

we use the monotonic (physical) counter provided by SGX,

which serves as a checkpointing mechanism; by verifying that

the counter stored on the database is equal to the one in SGX,

we can ensure that the data that was last received is indeed

stored on the database.

In addition to attacks on the database itself, attacks on IoT

devices can also compromise the integrity of the logged data.

In particular, since most IoT devices are not developed with

security features in mind, they might be easily corrupted and,

consequently, transmit wrong data to LogSafe. To detect such

scenarios, LogSafe provides a platform for secure computa-

tion where existing attack detection techniques [31] can be

executed inside an SGX enclave without revealing any data to

the outside world, except for the output of the computation.

Finally, availability holds when the system is able to handle

all messages and requests that it receives. Availability is diffi-

cult to guarantee in the worst case because there are no known

fail-safe techniques for defending against DDoS attacks. At the

same time, by developing a distributed system on the cloud

(possibly on multiple clusters), we can alleviate the effect

of DDoS attacks by requiring attackers to compromise many

more machines in order to disrupt the functionality of LogSafe.

With the above considerations in mind, we can now con-

cisely state the problem addressed by this paper and LogSafe.

Problem: This paper addresses the problem of how to design
and implement a distributed cloud-based logger for IoT de-
vices using SGX. The logger must satisfy the CIA properties in
the presence of eavesdropping, injection, and replay attacks.

IV. DESIGN OF LOGSAFE

In this section, we describe the architecture and the various

components of the logger design (for easy reference, the

architecture diagram is presented in Figure 2). Note that our

design makes the following (standard) assumptions that ensure

the logger security properties are satisfied:

• SGX is implemented correctly and not compromised,

• cryptographic primitives such as RSA and Advanced

Encryption Standard (AES) encryption are safe,

• an attacker cannot forge digital signatures, and

• the hash function is collision-resistant.

A. High Level Data Flow

This subsection describes at a high level the data flow within

LogSafe during its operation; the specifics of each phase are

described in their corresponding subsections of this section.

The IoT device initiates the protocol by establishing the secure

connection with the Logger. After authenticating each other

(i.e., validate the certificates), the Logger checks if it already

has the required information to process requests from the IoT

device. If not, it requests provisioning from the Manager to

acquire needed device’s meta-data and seal this information for

further usage (Step 2 in Figure 2); the Manager is described

in more detail in Section IV-D.

Upon receiving the data message, the Logger enclave first

calculates entry id, a monotonically increasing sequence

number that is incremented after each message and is stored in

the volatile memory of each Logger. Then the Logger encrypts

the received data using the device’s encryption key provided

by the Manager and generates the next hashchain block

following the tamper-evident logging scheme. As discussed in

Section IV-E below, hashchaining ensures that injection attacks

can be detected by storing a consistent hashed version of all

logged data; this hash also contains entry id such that the

order of message arrival can also be verified in the hash chain.



Fig. 2: LogSafe architecture and data flow.

On the cloud platform, nodes are expected to fail or crash –

in such a scenario, the crashed node cannot provide entry id
for log verification. Therefore, before making any changes in

the persistent storage, the Logger will send the latest entry id
to its successor node to back up the latest state of this device

(Step 4 in Figure 2). To ensure consistency, LogSafe only

processes requests from a device sequentially.
Even with backup nodes, all the device states are still

kept in the volatile memory and would not be available after

the cluster is shut down. Therefore, nodes occasionally send

device states to Trackers for a snapshot backup. The snapshot

algorithm (described in Section IV-F) is essentially another

hash chain log of the device states, but more importantly, it

uses SGX counters (non-volatile memory) for version tracking.

To verify if an IoT device’s log is the latest version (replay

attack detection), the auditor can query the corresponding node

serving the device if it is still active. Otherwise, it can trace

back the snapshot data and query the tracker’s SGX counter

to validate the freshness of the snapshot.
In the following subsections, we first provide the features

that support LogSafe architecture. After that, we refine the

high level data flow into a practical system:

• LogSafe consists of a decentralized distributed cluster

(Section IV-B) to guarantee high-availability and fault

tolerance.

• IoT devices need to establish a secure connection follow-

ing a handshake protocol (Section IV-C) with LogSafe

before being able to send log. Both IoT device and

LogSafe must be authenticated during the protocol, which

might require provisioning (Section IV-D) from the local

trusted authority.

• LogSafe requires both fast, in-memory counter (Sec-

tion IV-E) for node run-time verification and slow, per-

manent counter (Section IV-F) for long-term verification.

• LogSafe also provides a secure computing platform (Sec-

tion IV-G) for log auditing and attack detection.

B. Distributed Logger Cluster

The heart of LogSafe is a decentralized cluster of Logger
nodes, i.e., there is no centralized control or hierarchical

organization between the nodes. The Logger cluster uses

Chord [32] as the distributed look up protocol, where given

each IoT device is mapped to a Logger node using the device’s

id as key. Chord uses a consistent hashing algorithm to

efficiently assign IoT devices to the corresponding nodes. The

consistent hashing also reduce device assignment movement

when nodes are added to and removed from the system.

Availability is the main reason LogSafe is designed in the

distributed architecture. The cluster can be seen as an n-node

ring (to support consistent hashing), where n is the maximum

number of nodes that join the system at any given time. De-

pending on the workload, the user can choose to add or remove

nodes to balance the needs without much effect on the system

performance. In addition, LogSafe also provides fault tolerance

as each Logger’s state (containing information about all IoT

devices connected to it) is always replicated in (configurable



Fig. 3: Handshake protocol.

number) backup nodes. If the primary Logger fails, the IoT

device can switch to a backup node for continuous operation.

The backup node then continues to replicate the state to ensure

the replication factor is always met.

Since SGX does not support I/O operations (i.e., every

call to the I/O needs to leave the encrypted enclave, and re-

enter with the results), LogSafe is managed in a decentralized

fashion to avoid a single point of failure with an SGX node

handling a high number of I/O requests. There is also a possi-

bility that Logger node’s operating system is compromised and

affects the network stack. This could at most result in DDoS

(i.e., the node looks unresponsive to the IoT device or other

nodes). One way to mitigate the problem is allocating nodes in

different zones of the data center, or even different data centers

to minimize the number of nodes that can be attacked at the

same time. As long as LogSafe still has correct functional

nodes, it can detect anomalies and re-balance the system.

C. Handshake Protocol between IoT Device and LogSafe

Once an IoT device is mapped to a Logger node, the

two devices must first establish a secure connection (by

following the TLS handshake procedure). Once connection

is established, the IoT device starts transmitting data to the

logger. A typical message exchange between an IoT device

and the logger is presented in Figure 3.

To establish a connection, the IoT device first initiates the

handshake protocol by sending a Device Hello message

with cryptographic information such as the TLS version, along

with the cipher suites supported by the client. In response,

the logger replies with an SGX Hello message that contains

the chosen cipher suite along with its digital certificate. Upon

receiving the device’s certificate, the logger first verifies the

certificate authenticity, then checks whether the untrusted

storage (i.e., the database) already has sealed device meta-

data (i.e., encryption key). If the meta-data does not exist, the

logger will start provisioning protocol with the manager as

described in the following subsection. Otherwise, it will unseal

the meta-data into memory and query the latest log entry from

the database cluster to restore the hashchain. Finally, the logger

finishes the handshake protocol by sending an SGX Finish
message.

Note that an AES symmetric session key is also agreed

upon during the handshake; it is used by the IoT device for

data encryption in all communication henceforth.

D. The Manager and Provisioning Protocol

LogSafe requires a local trusted platform to function as the

Manager, responsible for provisioning both the IoT devices

and the logger nodes running on the cloud. The idea is that

the LogSafe user can run a single Manager node (even on

a non-SGX machine) locally in order to be able to manage

LogSafe on the cloud infrastructure.

Each IoT device can be provisioned during the manufactur-

ing process with a unique identifier id, a private/public key pair

(pkd, skd), the corresponding trusted root certificate, and the

Tracker’s addresses. This key pair is only used for establishing

a secure TLS connection with the logger node. In addition, an

encryption key skenc is also generated for the device, but this

key is stored only in the Manager for further provisioning with

the logger node.

LogSafe can have an arbitrary number of nodes running on

the cloud. Each Logger instance is essentially an untrusted

application, which loads the signed binary of the logger

enclave program. As these Logger nodes are managed by the

cloud service provider, they need to be correctly verified before

the Manager sends any sensitive information to the nodes, e.g.,

the key pairs (pkl, skl) to establish the TLS connection with

IoT devices, the key pairs (pksign, sksign) to sign encrypted

log entry, and device encryption key skenc. The verification

process can be done via SGX remote attestation as shown in

Figure 3 and detail below.

To initiate remote attestation, Logger sends a requests to

receive a random challenge from Manager (to prevent ses-

sion reuse). Next, the Logger sends the Extended Group ID

(GID) of EPID to the Manager to be verified, followed by

a modified Sigma protocol (i.e., involves three-step structure:

commitment, challenge, and response – showing as Sigma
S1, S2, and S3 in Figure 3), during which Logger and

Manager also perform a Diffie-Hellman Key Exchange for

secure communication. After receiving Sigma S3, which

contains the report from the Logger, the Manager can contact

IAS server to validate the authenticity of the report. If the

Logger is verified, it will received provisioning information

from the Manager via the established secure connection.

E. Tamper-evident Logging Scheme

Once the initial handshake is complete and LogSafe has

received the data message, it initiates the logging procedure.



Algorithm 1 Logging Algorithm

Logger State:
entry idk−1 ← previous log entry ID //(id0 = 0)

hk−1 ← previous hash value //(h0 = 0)

Input:
id← device ID

ck ← current message content

Parameters:
skenc ← device encryption key

sksign ← logger private key

1: procedure ADDENTRY(id, content ck)

2: entry idk ← entry idk−1 + 1
3: enc datak ← ENCRYPT(entry idk||ck, skenc)

4: hk ← hash(hk−1||entry idk||ck)

5: shk ← sign(hk, sksign)

6: BACKUPCOUNTER(id, entry idk)

7: WRITE(id, entry idk, enc datak, hk, shk)

8: ACKNOWLEDGE(id)

The complete logging scheme is presented in Algorithm 1.

Upon receiving a new data message, the logger enclave first

calculates the entry ID entry idk, a monotonically increasing

sequence number and is incremented after each message.

Given entry idk, the logger now encrypts the received data,

concatenated with the sequence number (Line 3 in Algo-

rithm 1); the data is encrypted using the corresponding IoT

device’s encryption key, as provided by the Manager.

In addition, for tamper detection reasons, we compute the

hash hk of all the information related to the current message

(sequence number and the message), together with the hash of

the previous message hk−1 (Line 4 in Algorithm 1). The hash

hk is then signed by the logger enclave using the enclave’s

private key sksign (Line 5 in Algorithm 1). As discussed in [8],

this hash chain ensures that the proper message sequence is

preserved, such that any attempt to change message content

will create a different hash chain branching off at the affected

log entry, thereby enabling us to detect the data tampering.

In summary, for each device the logger stores two classes

of information – the encrypted data (encrypted using the

corresponding device’s encryption key) and a hash of the data,

together with the hash of previous message. This hash chain

ensures the tamper-evident property of the logger by detecting

any data modifications by external entities (e.g., the attacker

modifying the contents stored on disk).

F. Counter Snapshot Protocol

The mechanisms described so far ensure that stored log can

be appropriately verified when Logger node is running. We

also need to make sure that the security properties still hold

even when user shuts down the cluster. One way to achieve

this is having each node seal the system state upon shutdown.

This approach might not be suitable for the cloud environment

Algorithm 2 Snapshot Algorithm

Tracker State:
sk−1 ← previous sequence number //(s0 = 0)

hk−1 ← previous hash value //(h0 = 0)

Input:
id← device ID

entry idk ← latest entry counter from the device

Parameters:
tracker id← tracker ID

sksign ← tracker private key

counter id← monotonic counter ID

1: procedure ADDSNAPSHOT(id, entry idk)

2: sk ← sk−1 + 1
3: hk ← hash(hk−1||id||entry idk||sk)

4: shk ← sign(hk, sksign)

5: WRITE(tracker id, counter id,
sk, id, entry idk, hk, shk)

6: ACKNOWLEDGE(id)

where physical machines are usually assigned to different users

depends on priorities and workload.

LogSafe makes sure long term stored log can still be verified

via the use of the Tracker node for snapshots. This node can

be replicated (by a factor of two in Figure 2) to ensure fault-

tolerance. Tracker functions very similarly to Logger node,

with two main differences: (1) instead of creating logs for IoT

devices, it creates snapshots for device latest counter values;

(2) Tracker uses SGX physical monotonic counter instead of

memory variable.

SGX monotonic counters are available via Platform Service

Enclave, with up to 256 counters available [33], identified by

a counter ID and a nonce. Each operation with the counter is

performed on non-volatile memory such that an enclave with

the same signing key can access the counter to read/increment

even after the machine is shut down/rebooted.

With the SGX monotonic counter, the snapshot algorithm

is presented in Algorithm 2. In addition to the use of phys-

ical monotonic counter and different generated content, the

snapshot algorithm just creates the hashchain and signature

without encrypting the data. The reason is these information

are already available in plaintext on Logger storage. We only

need to guarantee the authenticity and freshness of the data

stored in snapshots. Since the operations with monotonic

counter are very slow, we aim to minimize snapshot creation

in specific cases: logger cluster shutdown, IoT device inactive

for a fixed period of time (e.g., Logger node can temporary

free memory for other devices).

In summary, given both in-memory Logger counter and

permanent Tracker counter, LogSafe allows logged data to be

verified at any time regardless of system topology changes.



G. Secure Computation

Although the logging scheme presented in the previous

subsections provides tamper evidence if the logged data have

been changed, it does not address the case where the IoT de-

vice itself might be under attack, possibly transmitting wrong

information for storage. In order to handle such a scenario,

LogSafe also supports delegating secure computation (e.g.,

attack detection) on the logged data. The idea is very similar to

IRON’s secure functional encryption [25], such that functional

enclaves can be deployed to the cloud to securely decrypt the

sensitive data, perform the prescripted computations, and only

return the result to the user. Note that system designers need

to approve any such computation before it is allowed to run

on the enclave (in other words, arbitrary computation is not

allowed because a malicious node might ask for all the data,

for example).

There are various techniques can be used to detect possible

IoT attacks, such as model-based approaches [34], sensor and

information fusion [31], [35], as well as data-driven machine

learning approaches [36]. These algorithms, along with the

hashchain verification algorithm [9] can be implemented as

query primitives and provisioned to nodes on the cloud by the

Manager. It can perform remote attestation to ensure the node

is correctly started before giving decryption key to the node so

that the cloud services can regularly execute audits for attack

detection.

V. IMPLEMENTATION

We implemented the LogSafe prototype in C++ with four

applications: IoT Device, Logger, Tracker, and Manager.

These applications represent the main modules that constitute

the LogSafe architecture. The Device was developed on both

Windows 10 Professional and Ubuntu 16.04 without any

dependency to SGX (since it is potentially untrusted). All other

modules were developed on Windows 10 Professional using

the Intel SGX SDK 1.8 for Windows2 (currently, Intel SGX

SDK for Linux does not support all the required features such

as monotonic counter operations).

The applications share the same untrusted library that was

developed using Boost Asio 1.65.13 to provide asynchronous

event-driven support across LogSafe. In addition, the Logger
and Tracker applications also load the corresponding enclave

dynamic libraries, logger.dll and tracker.dll respec-

tively. These libraries feature trusted functions (ECALLs) to

be executed inside the enclave, while the applications provide

untrusted functions (OCALLs) to be called from the enclave.

Conceptually, the Device exposes a synchronized AddLog
function, during which it establishes a secure connection with

the Logger (if it does not already exist) and sends the message

over this connection. The Logger and the Tracker share the

same code base but have different event handlers to feature

different purposes. After loading the enclave libraries, they

start to listen on the pre-defined internal port for incoming

2https://software.intel.com/en-us/sgx-sdk/download
3http://www.boost.org/doc/libs/1 65 1/doc/html/boost asio.html

LogSafe messages. The Logger also listens on additional

service port for incoming IoT device’s requests.

LogSafe uses cryptographic primitives from SGX SDK’s

trusted cryptographic library sgx_tcrypto.lib and

OpenSSL library 1.0.2 (with trusted version4 for the enclave

libraries and untrusted version5 for the applications). More

specifically, LogSafe encrypts data with Rijndael AES-GCM

encryption on 128-bit key size and 96-bit initialization vector.

Logged data are hashed using SHA256 and signed using 256-

bit elliptic curve digital signature algorithm (ECDSA). SGX

SDK also provides 256-bit elliptic curve Diffie-Hellman key

exchange algorithm (ECDHE) to establish the secure connec-

tion during remote attestation process. These cryptographic

primitives are provided with resilience to side-channel attacks.

LogSafe makes use of two optimizations to reduce compu-

tation costs on IoT devices:

1) Front-end router: With Chord’s lookup protocol, an IoT

device only needs to know the subnet of LogSafe cluster and

finds an active node to lookup for its primary Logger node.

To further reduce the time needed for the device to find the

correct logger node to start the logging procedure, LogSafe

has a non-SGX Router as the front-end of the system. Each

logger node periodically sends a heartbeat message to the

Router to keep the alive status in the node list. Upon receiving

a request from an IoT device, it will be able to compute

the address of the corresponding logger node and return the

information to the IoT device. It is important to mention that

the Router is not trusted, which means it can return the wrong

information or not reply anything. However, as the correctness

of the matching will be verified during the handshake protocol,

the IoT device will eventually find the correct node following

Chord’s lookup protocol.

2) TLS session resumption: In IoT applications where de-

vices often move around and use unreliable Internet connectiv-

ity, these devices may need to re-establish secure connection

frequently. This communication overhead can be very costly

for IoT devices as shown in Section VI. LogSafe can improve

the TLS performance by keeping the established session state

(represented by OpenSSL’s SSL and I/O stream abstraction

BIO objects) so that an existing device can reuse the previous

session when reconnecting to LogSafe. However, a session

cannot be used forever to ensure forward secrecy. IoT device

can only reuse a session up to a configurable time before

the device needs to negotiate a new session. The session

state is kept in the enclave and time is measured using the

trusted clock from SGX platform services to ensure security

guarantees.

VI. EVALUATION

In this section, we present the experimental evaluation of

the LogSafe implementation. We first discuss the overhead

for setup time before presenting the scalability of LogSafe

in normal operation and in snapshot operation. Finally, we

4https://software.intel.com/sites/default/files/managed/3b/05/Intel-SgxSSL-
Library-User-Guide.pdf

5https://www.openssl.org/source/



TABLE I: Execution time breakdown of handshake protocol.

Remote attestation is needed only if the Logger does not have

the device’s meta-data and requires provisioning.

Intel Edison Dell 5480 Task Logger
717μs 87μs Device Hello →

← SGX Hello 5,886μs

370,055μs 8,617μs Device Negotiate →
(*) Remote Attestation 1.038s

← SGX Finish 5,935 μs

1.420s 1.059s Total time (with remote attestation)

382.5ms 20.5ms Total time (without remote attestation)

compare LogSafe with previous proposed loggers using both

SGX and non-SGX implementations.

A. Setup Time

Before any IoT device begins to send encrypted data to

LogSafe, it needs to establish a trusted connection with the

Logger enclave as described in Section IV. In this experiment,

we measure the setup time needed until both the IoT device

and LogSafe successfully establish a TLS channel in two

cases: (1) an IoT device connects to LogSafe for the first time

(i.e., Logger needs to request provisioning with the Manager);

(2) an IoT device reconnects to the Logger (i.e., this node

already has the device’s meta-data sealed).

In the experimental setup, the Logger and the Man-
ager are installed on two Dell Latitude 5480 laptops, each

with a 2.5GHz Intel Core i5-7200U CPU and 8GB RAM,

running Windows 10 Pro. The client application is exe-

cuted on an Intel Edison board, a computing module with

a 500 MHz Intel Atom and 1GB RAM, running Yocto

Linux. All the parties are configured with TLS 1.2 and

TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 cipher

suite. To quantify the impact of the specific IoT device

platform on setup time, we also run the client application on

another Dell Latitude 5480 laptop and compare the two times.

All the machines are connected via a 1Gbps switch while the

Intel Edison board is connected via a Wireless Access Point

802.11n 150Mbps on the same switch.

As can be seen from Table I, the setup time is significantly

higher if the Logger needs to be provisioned. As described

earlier, the remote attestation procedure not only involves

a communication protocol between the cloud node and the

Manager, but it also requires communication with Intel IAS

server. The current version of IAS requires establishing a TLS

session with a valid client certificate before any API calls

can be made. In our experiment, it takes almost 600ms to

get the results from Intel IAS server. However, it is important

to emphasize that Logger provisioning is a one-time cost and

does not affect the long-term performance of our system.

RSA-involved operations (i.e., SGX Hello, Device Negoti-
ate, and SGX Finish) need almost equivalent time on both sides

running on Dell laptop. Device Negotiate requires a slightly

higher time because the IoT device needs to not only verify

Fig. 4: LogSafe’s average message processing time with

different configurations under variant workloads.

the certificate sent by LogSafe, but also generates its cor-

responding certificate reply. However, without provisioning,

the overhead is clearly dominated by Device Negotiate on

the lower-computation-power Intel Edison. The results further

confirm the benefits of the TLS session resumption feature as

the overhead only takes place at the beginning of each session

(e.g., once every hour, as in a standard TLS configuration), so

it is not expected to present a computational burden.

B. Logging Performance

Adding security guarantees using SGX increases message

transfer latency. To quantify the impact and evaluate the

benefits of the distributed logger, we set up an experiment to

measure the average message processing time. This experiment

stress tests LogSafe under different cluster configuration: (1) a

single Logger node (with another node functioning as backup

only); (2) two fully functional Logger nodes (i.e., two nodes

processing requests from IoT devices and acting as backup for

each other); (3) three fully functional Logger nodes. We use

Dell Latitude 5480 machines to run the cluster, while another

machine is used to synthetically generate requests (100 bytes

messages) from IoT devices, ranging from 1 to 256 devices.

Figure 4 shows the results. With only one IoT device,

there is no difference between three configurations with an

average of 3ms per request. This can be explained by the

communication flow in Section IV: LogSafe processes requests

from a device sequentially because the device must receive an

acknowledgment message before sending the next requests.

The multi-threading implementation starts to benefit with two

IoT devices joining the system as the requests can be processed

in parallel, resulting in half processing time.

As the number of IoT devices increases beyond the number

of cores on the single- and double-node systems, the average

processing time for the cluster with three nodes is roughly

an order of magnitude lower (as low as 0.2ms per request).

We also notice that at best performance, the gain from one-

node to other configurations is not double or triple based



TABLE II: Execution time breakdown of cryptographic functions. Snapshot algorithm only involves hashing, signing, and

counter increment.

Operation
Message Size (bytes)

25 26 27 28 29 210 211 212 213 214

Encryption 0.30 μs 0.30 μs 0.40 μs 0.40 μs 0.50 μs 0.70 μs 1.20 μs 2.10 μs 3.80 μs 7.50 μs

Hash 0.30 μs 0.50 μs 0.80 μs 1.20 μs 2.30 μs 4.20 μs 7.90 μs 15.70 μs 31.00 μs 60.70 μs

Sign 388.92 μs

Counter Increment 152 ms

on the number of nodes. It is because these nodes not only

process incoming requests from IoT devices, they also need to

function as backups for other nodes. Nevertheless, the results

illustrate the benefit of the scalable design of LogSafe – for

any fixed number of IoT devices, the average processing time

per message is bound to greatly decrease as the number of

nodes in the LogSafe cluster increases. To provide a more

practical interpretation of the above results, note that if IoT

devices send data every 1 second, the three-node LogSafe can

support 5000 devices simultaneously.

C. Cryptographic Operation Latency

In this subsection, we measure the effect of the proposed

snapshot algorithm, in which the SGX monotonic counter

is periodically incremented; each counter increment is ex-

pected to be slow due to non-volatile memory interactions.

To quantify this and identify the bottleneck of cryptographic

operations, we measure the latency of each cryptographic

operation, including encryption, hashing, signing, and counter

increment; for more exhaustive evaluation, the message size is

varied from 25 bytes (AES block size) to 214 bytes (maximum

TLS plain text length specified by TLS specification [37]).

Note that the hashchaining algorithm only signs concatenated

hashes and counter values, which have fixed length, so that the

time required for sign operation does not change with message

length.

Table II provides the average time it takes to perform the

logging sub-procedures. In particular, the time needed for

encryption and hashing increases linearly with the message

length. Incrementing the SGX-based counter takes almost

152ms and signing takes 389μs on average, which are much

higher than other operations, as expected. This has a significant

effect on snapshot time, resulting in approximately 160ms

per snapshot processing time. However, the typical snapshot

data are only dozen bytes containing the device ID and latest

counter value. In addition, it is expected that Tracker usually

takes snapshot only when a node is shutting down. Thus,

the snapshot algorithm is able to minimize the overhead

introduced by incrementing the monotonic counter.

D. Performance Comparison

Finally, it is important to note the overhead of LogSafe

and discuss the trade-off of using SGX by comparing the

proposed logger with one that does not use SGX, and with

other proposed secure loggers using SGX. In particular, this

Fig. 5: Average message processing time comparison between

LogSafe and other implementations.

experiment aims to measure the average processing time for

100-byte messages by LogSafe in comparison with a logger

implementing the same algorithm without using SGX, and

with an implementation of a single-node SGX-based logger,

referred to as Cloud Logger in this paper, proposed in our

prior work [9]. For LogSafe, we use two cluster configurations:

single-node and three-node. The non-SGX logger features the

same algorithm but was implemented using Intel Integrated

Performance Primitives Cryptography library6 to fully utilize

AES-NI instructions. Lastly, the CloudLogger is configured

with a buffer size of 50.

The results are illustrated in Figure 5. As expected, the

non-SGX logger yields the best performance using the same

cluster configuration with LogSafe. At the same time, the

overhead of SGX (namely, enclave boundary data transfer and

different cryptographic implementations) does not appear to

be prohibitive as the average processing time per message is

only about 42% slower – furthermore, the difference in average

processing times is bound to decrease in systems with more

nodes and lower processing times. Thus, LogSafe provides

much better privacy and security guarantees, especially over

cloud adversary, while paying a reasonable price in terms of

performance.

In addition, it can be seen that LogSafe greatly outperforms

6https://software.intel.com/en-us/ipp-crypto-reference



Cloud Logger – LogSafe is more than 10 times faster than the

one-node Cloud Logger which performs a physical counter

increment after every few messages from an IoT device. Note

that Cloud Logger is also very similar to SGX-Log [10],

another single-node SGX-based logger. However, SGX-Log

is executed in Intel SGX SDK for Linux, which does not

support the physical counter increment since all current Linux

versions are not able to interact with physical monotonic

counters and only emulate the counter in software. Hence,

SGX-Log effectively provides weaker security guarantees,

which is why a fair comparison between LogSafe and SGX-

Log is impossible.

VII. CONCLUSIONS

In this paper, we described LogSafe, a cloud-based logger

for the IoT environment that stores secure logs from devices

and allows for forensic analysis in case of an adversarial event.

We used SGX as a trusted hardware to enable the design of the

logger, which guarantees confidentiality and integrity of stored

data and provides tamper-detection of the data. LogSafe is

highly scalable and fault-tolerant with decentralized distributed

logger nodes that can be provisioned on the fly based on

system workload. We leveraged the greater computational

power of SGX to improve on works that attempt secure

logging and to provide stronger security guarantees. LogSafe

is able to defend against three classes of attacks, namely

replay, injection and eavesdropping attacks. Finally, based on

the simulation experiments, the proposed logger is scalable

to support a large number of IoT devices as well as a large

transmission of data.
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