
University of Pennsylvania
ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

4-2018

Cyber-Physical System Checkpointing and
Recovery
Fanxin Kong
University of Pennsylvania, fanxink@cis.upenn.edu

Meng Xu
University of Pennsylvania, mengxu@cis.upenn.edu

James Weimer
University of Pennsylvania, weimerj@cis.upenn.edu

Oleg Sokolsky
University of Pennsylvania, sokolsky@cis.upenn.edu

Insup Lee
University of Pennsylvania, lee@cis.upenn.edu

Follow this and additional works at: https://repository.upenn.edu/cis_papers

Part of the Computer Engineering Commons, and the Computer Sciences Commons

9th ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS) (part of CPS Week 2018) ,Porto, Portugal, April 11 - 13, 2018.

This paper is posted at ScholarlyCommons. https://repository.upenn.edu/cis_papers/839
For more information, please contact repository@pobox.upenn.edu.

Recommended Citation
Fanxin Kong, Meng Xu, James Weimer, Oleg Sokolsky, and Insup Lee, "Cyber-Physical System Checkpointing and Recovery",
International Conference on Cyber-Physical Systems (ICCPS) . April 2018.

https://repository.upenn.edu?utm_source=repository.upenn.edu%2Fcis_papers%2F839&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F839&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fcis_papers%2F839&utm_medium=PDF&utm_campaign=PDFCoverPages
https://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F839&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=repository.upenn.edu%2Fcis_papers%2F839&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fcis_papers%2F839&utm_medium=PDF&utm_campaign=PDFCoverPages
http://iccps.acm.org/2018/?q=node/10
http://www.cpsweek.org/
https://repository.upenn.edu/cis_papers/839
mailto:repository@pobox.upenn.edu

Cyber-Physical System Checkpointing and Recovery

Abstract
Transitioning to more open architectures has been making Cyber-Physical Systems (CPS) vulnerable to
malicious attacks that are beyond the conventional cyber attacks. This paper studies attack-resilience
enhancement for a system under emerging attacks in the environment of the controller. An effective way to
address this problem is to make system state estimation accurate enough for control regardless of the
compromised components. This work follows this way and develops a procedure named CPS checkpointing
and recovery, which leverages historical data to recover failed system states. Specially, we first propose a new
concept of physical-state recovery. The essential operation is defined as rolling the system forward starting
from a consistent historical system state. Second, we design a checkpointing protocol that defines how to
record system states for the recovery. The protocol introduces a sliding window that accommodates attack-
detection delay to improve the correctness of stored states. Third, we present a use case of CPS checkpointing
and recovery that deals with compromised sensor measurements. At last, we evaluate our design through
conducting simulator-based experiments and illustrating the use of our design with an unmanned vehicle case
study.

Disciplines
Computer Engineering | Computer Sciences

Comments
9th ACM/IEEE International Conference on Cyber-Physical Systems (ICCPS) (part of CPS Week 2018)
,Porto, Portugal, April 11 - 13, 2018.

This conference paper is available at ScholarlyCommons: https://repository.upenn.edu/cis_papers/839

http://iccps.acm.org/2018/?q=node/10
http://www.cpsweek.org/
https://repository.upenn.edu/cis_papers/839?utm_source=repository.upenn.edu%2Fcis_papers%2F839&utm_medium=PDF&utm_campaign=PDFCoverPages

Cyber-Physical System Checkpointing and Recovery

Fanxin Kong, Meng Xu, James Weimer, Oleg Sokolsky, Insup Lee
Department of Computer & Information Science, University of Pennsylvania

{fanxink, mengxu, weimerj, sokolsky, lee}@cis.upenn.edu

Abstract—Transitioning to more open architectures has been
making Cyber-Physical Systems (CPS) vulnerable to malicious
attacks that are beyond the conventional cyber attacks. This
paper studies attack-resilience enhancement for a system under
emerging attacks in the environment of the controller. An
effective way to address this problem is to make system
state estimation accurate enough for control regardless of the
compromised components. This work follows this way and
develops a procedure named CPS checkpointing and recovery,
which leverages historical data to recover failed system states.
Specially, we first propose a new concept of physical-state
recovery. The essential operation is defined as rolling the system
forward starting from a consistent historical system state.
Second, we design a checkpointing protocol that defines how to
record system states for the recovery. The protocol introduces
a sliding window that accommodates attack-detection delay to
improve the correctness of stored states. Third, we present a
use case of CPS checkpointing and recovery that deals with
compromised sensor measurements. At last, we evaluate our
design through conducting simulator-based experiments and
illustrating the use of our design with an unmanned vehicle
case study.

Keywords-Cyber-Physical Systems, Security, Resilience,
Checkpointing, Recovery

I. INTRODUCTION

Cyber-Physical Systems (CPS) tightly couple comput-
ing and communication processes with sensing and actu-
ation components that interact with the physical world.
A typical example for such systems is modern vehicles,
which demonstrate a complex interaction of many Electric
Control Units (ECUs) over different types of networks.
The increasing functionalities and network interoperability
transition CPS from isolated control systems to more open
interacting architectures, which enables various new services
and applications such as remote code updates and vehicle-to-
vehicle communication. Meanwhile, this transition, however,
introduces potential security vulnerabilities that are easily
exploitable [1]–[3].

The interaction between information technology and the
physical world makes CPS vulnerable to malicious attacks
that are beyond the traditional cyber attacks [4]–[6]. For
example, the authors in [7] point out that using simple
methods can disrupt the operation of a car and even disable
the vehicle. Further, the authors in [8] illustrate a case study,
where a Denial-of-Service (DoS) attack can be launched to
compromise the CAN bus and the functionalities dependent
on the bus. This issue is even more emphasized with the rise

of vehicle autonomy, because the autonomy will exacerbate
the consequences of attacks. Thus, we argue that security
is one key prerequisite for large deployment of autonomous
systems such as self-driving cars.

Exclusively employing cyber-security techniques to se-
cure CPS is inadequate. This is indicated especially by non-
invasive sensor attacks, that is, when the physical environ-
ment is compromised to allow injecting malicious signals
to sensors [6]. For example, the authors in [9] exploit
weaknesses in wheel speed sensors and present non-invasive
attacks on Antilock Braking Systems (ABS). The authors
in [10] demonstrate attacks on GPS sensors to misguide a
yacht off course. In addition, the authors in [11] demonstrate
remote attacks on sensors including camera and LiDAR that
are usually mounted in autonomous vehicles.

These results have motivated many research efforts that
study the problems of intrusion detection (e.g., [12]–[15])
and attack-resilience (e.g., [6], [16]–[18]) under the cases
of various attacks on sensors, actuators and communication
networks. An effective way for improving attack-resilience is
to develop methods that can estimate system states accurate
enough for control regardless of the compromised compo-
nents. One advantage of this way is that it allows a system
to use the same controller as in the case without attacks.
Existing work such as [6], [16] right follows this way.
However, the proposed techniques confine to the setting with
sensor redundancy, i.e., multiple sensors (partially) measur-
ing the same physical variables. Further, the techniques are
applicable only when the number of compromised sensors
is within a threshold. As a result, it is still in question how
to deal with attack-resilience for the case that violates these
above limitations.

To address this case, we propose to leverage checkpoint-
ing and recovery, i.e., using historical data to recover system
states. However, to design such a procedure well applicable
to CPS is a non-trivial task because of the following two ma-
jor challenges. Firstly, the conventional roll-back operation
is unsuitable for recovering states of the plant. Physically
rolling back the plant usually incurs considerable overhead,
and further it is even infeasible to roll back some irreversible
processes. Secondly, detection mechanisms, such as data-
driven methods for sensor attacks [12], [19], usually have
substantial detection delay, i.e., the time interval between
the occurrence of an attack and the detection of it. States
stored during the detection interval may be incorrect and

thus using these states can result in unsuccessful recoveries.
In this paper, we develop a procedure of CPS recovery and

checkpointing that well addresses both challenges. Firstly,
we propose a new concept of physical-state recovery. The
essential operation is defined as rolling the system forward
to the current time, starting from a consistent historical
physical-state. This roll-forward operation has much lower
overhead than the conventional roll-back operation in the
context of recovering physical-states. Secondly, we design
a checkpointing protocol that defines how to record system
states used for the recovery. The protocol employs a sliding
window that accommodates the detection delay to improve
the correctness of the stored states. Note that the CPS check-
pointing and recovery is an reactive procedure that needs to
be used with existing detection mechanisms (e.g., [19], [20]),
that is, the physical-state recovery is triggered to execute if
the mechanisms discover some compromised components;
otherwise, the system follows the checkpointing protocol to
record states.

In essence, the CPS checkpointing and recovery is a
general method that handles failed estimated states. Such
states can be created by different kinds of possibilities and
favorably, our method is not confined to a certain kind. To be
specific, our method is applicable to deal with compromised
sensor measurements caused by attacks and faults. In this
sense, attack and fault are treated interchangeably in this
paper. We then present a use case of the procedure on
addressing sensor attacks/faults, e.g., attackers modifying
sensor information or preventing the controller from receiv-
ing it. Finally, we evaluate our design through conducting
simulation-based experiments as well as illustrate the use of
our design on an unmanned vehicle case study.

The rest of the paper is organized as follows. Section II
defines CPS recovery. Section III presents the checkpointing
protocol. Section IV uses CPS recovery and checkpointing to
address sensor attacks/faults. Section V validates our design.
Section VII concludes the paper.

II. CYBER-PHYSICAL SYSTEM RECOVERY

Conceptually, CPS recovery can be seen as to restore the
controllability and functionality of the system. We study
CPS recovery through dividing it into two different oper-
ations: recovery of cyber-states and recovery of physical-
states. Cyber-states are defined as computing information of
a controller, such as values of data variables. Physical-states
are defined as physical information of a plant, such as the
velocity of a motor.

A. Cyber-State Recovery

Recovery of cyber-states, or cyber-state recovery, is sim-
ilar to that of conventional computer systems. Thus, we
review only several key concepts and definitions from [21]
and adapt them to cyber-physical systems.

task0

task1

task2

(a) Consistent state (b) Inconsistent state

m1

m2

m1

m2

task3 tt

Figure 1. An example of consistent and inconsistent cyber-state.

Definition 1: [Consistent Global Cyber-State] A consis-
tent global cyber-state is one in which, if the state of a task
reflects a message receipt, then the state of the corresponding
sender task reflects sending that message.

Definition 2: [Cyber-State Recovery] Cyber-state recov-
ery is defined as rolling the cyber component (i.e., the
controller) back to a consistent global cyber-state.

Fig. 1 depicts an example that illustrates the above two
definitions, where the cyber component, i.e., the controller,
consisting of four tasks. Fig. 1(a) shows a global consistent
cyber-state (marked by the black line), because all the four
states satisfy Def. 1. By contrast, Fig. 1(b) is an inconsistent
state, because task1 is shown to have received message m1
but the state of task0 does not reflect sending it.

Tasks task0, task1, and task2 are called to be dependent
on each other due to their mutual communication; while
task3 is independent on other tasks because it has no
communication with them. For an independent task, e.g.,
task3, any of its previously stored correct cyber-states can
be used for recovery, and the latest one is usually used for
the global consistent state in order to shorten the recovery
time as much as possible. The cyber-state recovery can be
that the cyber component rolls back to the global consistent
state in Fig. 1(a) if some failure occurs. With stored message
m1, task0 does not need to resend it and thus task1 can
then start to execute from that state.

Another key concept is roll-back propagation, which is a
phenomenon that upon a failure of one or more tasks, their
dependencies may force some of the tasks that do not fail to
roll back. Under some situations, rollback propagation may
extend back to the initial state, losing all the work executed
before the failure.

The above just introduces some key background for cyber-
state recovery. There are many existing works that study
cyber-state recovery and validate its feasibility [21]. Thus,
in the following, we will focus on discussing our newly
proposed physical-state recovery.

B. Physical-State Recovery

Unlike CPS, conventional computer systems usually do
not have much interaction with the physical space. Thus no
clear definition of physical-state recovery has been studied
for them. We identify and define physical-state recovery for
CPS in this subsection.

s0

(a) Inconsistent state (b) Consistent state

s1

2ݏ
3ݏ tt

k−Nܠkܠkܠ k−Nܠ

Figure 2. An example of consistent and inconsistent physical-state. ×:
failure.

We consider a Linear-Time Invariant (LTI) system given
by Eqn. (1)(2), as an example to present physical-state
recovery.

xk+1 = Axk + Buk + vk, (1)
yk = Cxk + wk, (2)

where x ∈ Rn denotes the plant’s physical-state vectors;
u ∈ Rm is the control input vectors; y ∈ Rp denotes the
plant’s output vectors from measurements of sensors; v ∈
Rn and w ∈ Rp are noise vectors; A, B and C have suitable
dimensions.

Definition 3: [Consistent Global Physical-State] A con-
sistent global physical-state is one that reflects each individ-
ual internal element’s value of the same time point.

Fig. 2 depicts an example that illustrates the above def-
inition, where s0 to s3 are four internal elements of the
system state. Fig. 2(a) presents an inconsistent physical-state
(marked by the black line), because the value of element s1
corresponds to a different time point from that of other three
elements. By contrast, Fig. 2(b) shows a global consistent
physical-state, because the values of all four elements are of
the same time tk−N .

The rationale of defining the physical-state consistency
based on time is two-fold. First, in real systems, clocks are
synchronized within some very small fixed time interval,
and we acknowledge that clock synchronization is non-
negligible, in general. However, to simplify presentation,
here we assume clock synchronization error is small and
omit clock synchronization uncertainty in the analysis. Sec-
ond, internal elements of a system state change separately
as to the output of the system.

Definition 4: [Physical-State Recovery] Physical-state re-
covery is defined as rolling values of internal elements
forward to the current time, by starting from a consistent
global physical-state.

We use xk,(1,q) ∈ Rq to denote the physical-state vector
of q failed elements, i.e., xk,(1,q) = [xk,1, ..., xk,q]

T , and use
xk,(q+1,n) ∈ Rn−q to denote the vector of n − q unfailed
elements, i.e., xk,(q+1,n) = [xk,q+1, ..., xk,n]T . For example,
as shown in Fig. 2(b), elements s0 and s1 fail at current
time tk, i.e., xk,(1,2) = [xk,1, xk,2]T , while elements s2
and s3 operate correctly, i.e., xk,(3,4) = [xk,3, xk,4]T . We
consider elements dependent on attacked/faulty sensors as
failed. By Def. 4, the physical-state recovery is to perform

the roll-forward state prediction for q failed elements using
the following two steps.

Step (i): use the control inputs between tk−N and tk to
make a prediction about the current system state (of all
elements), that is,

x̂k = AN x̄k−N +

N∑
i=1

Ai−1Buk−i, (3)

where x̄k−N is a consistent global physical-state estimated
using yk−N = Cx̄k−N . We assume that the system is
observable, i.e., full states can be estimated by some way.

Step (ii): for the q failed elements, use the value vector
extracted from x̂k (given by Eqn. (3)), that is, x̂k,(1,q). This
means that this part of state prediction is based on the
historical information.

For the n− q unfailed elements, we use the value vector
estimated by yk = Cx̄k, which is x̄k,(q+1,n). This means
that this part of state estimation is based on current sensor
measurements. Hence, the overall estimated state x̃k after
the physical-state recovery is

x̃k =

[
x̂k,(1,q)
x̄k,(q+1,n)

]
. (4)

There is no roll-forward propagation phenomenon for
the defined physical-state recovery, which means that failed
elements will not cause unfailed elements to roll forward.
The reason is two-fold. Failed elements depend on which
sensors are compromised, instead of depending on other
elements. Further, the internal elements of a system state
change separately, and the failed and unfailed elements are
also treated separately by the defined physical-state recovery.

Rationale of Roll-Forward Recovery. There can be two
different ways to perform physical-state recovery: one is
rolling the system forward from the consistent global state
while the other is rolling the plant back to that state. To
realize the latter way, it needs to make the plant’s state match
the values of the consistent state, which requires physically
rolls the plant back. This operation not only comes with
high overhead but also sometimes is infeasible, e.g., for
irreversible processes. By contrast, the roll-forward recovery
is carried out from the other direction, i.e., matching the
values to the plant’s state, which is thus always feasible and
with lower overhead. Therefore, we choose to use the roll-
forward operation for the physical-state recovery.

C. Cyber-State vs. Physical-State Recovery

Table I presents a comparison about key features of cyber-
state recovery and physical-state recovery.

Firstly, cyber-state recovery defines the state consistency
based on logic to ensure the computational correctness
of tasks of a controller; while the physical-state recovery
defines the consistency based on time to ensure that values
of internal elements reflect the plant’s state of the same time
point.

Table I
MAJOR DIFFERENCES BETWEEN CYBER-STATE AND PHYSICAL-STATE RECOVERY

Consistency Direction Propagation Applicability
Cyber-state recovery Logic-based Roll-back Yes Within one sampling period
Physical-state recovery Time-based Roll-forward No Across sampling periods

Secondly, cyber-state recovery is rolling the cyber-
component or the controller back to a consistent global state
and the roll-back may propagate among tasks because of
their dependence; while the physical-state recovery is rolling
internal elements’ values forward to the current time and the
roll-forward does not propagate among internal elements.

Thirdly, cyber-state recovery confines to the cyber-states
within one single sampling period; while the physi-cal-
state recovery has a scope of physical-states across multiple
sampling periods. The execution of tasks in one sampling
period is usually separate from their execution in other
periods, and thus the cyber-states are only valid and useful
within one single sampling period. By contrast, the physical-
states (i.e., values of internal elements) do not change while
executing control tasks within one period, and instead they
may change across sampling periods. Hence, for a case that
needs both recoveries, a system first performs cyber-state
recovery and then carries out physical-state recovery.

D. State Prediction and Estimation Errors

The overall error ek caused by the physical-state recovery
is composed of two parts: (i) the state prediction error
ek,(1,q) of the q failed elements, and (ii) the state estimation
error ek,(q+1,n) of the n− q unfailed elements. That is,

ek =

[
ek,(1,q)
ek,(q+1,n)

]
. (5)

(i) The prediction error ek,(1,q) is caused by the physical-
state recovery, which is thus

ek,(1,q) = [xk − x̂k](1,q)

=
[
ANδk−N

]
(1,q)

+

[
N∑
i=1

Ai−1vk−i

]
(1,q)

, (6)

where δk−N = xk−N − x̄k−N can be obtained by solving
the following equation set:{

yk−N = Cxk−N + wk−N
yk−N = Cx̄k−N

. (7)

(ii) The estimation ek,(q+1,n) is induced by sensor mea-
surements, which is thus

ek,(q+1,n) = δk,(q+1,n), (8)

where δk = xk − x̄k can be obtained by a similar way as
in Eqn. (7).

We use |P| to denote the matrix whose elements are
absolute values of the initial matrix P. Further, for matrices

P and Q, P � Q means that the matrix P is element-
wise less than or equal to the matrix Q. If we assume that
|δk| � εδk and |vk| � εvk , then we can bound the state
prediction and estimation errors as

ek,(1,q) � e+
k,(1,q) =

[
|AN |εδk−N

]
(1,q)

+

[
N∑
i=1

|Ai−1|εvk−i

]
(1,q)

,

ek,(q+1,n) � e+
k,(q+1,n) = εδk,(q+1,n)

. (9)

From the above equation, we can see that the bound
e+
k,(1,q) increases as the time interval (tk−N , tk) or the

number N grows; while the bound e+
k,(q+1,n) only depends

on the information at current time tk. Later on, we will
discuss more about the state prediction error in the eval-
uation section. Note that in the above, we just show an
example of how the physical-state recovery works, where
the system model is used to carry out state prediction. The
prediction can be also preformed by other methods, such
as Kalman filter or machine learning. Comparison between
these methods is one future work.

III. CHECKPOINTING CYBER-PHYSICAL SYSTEMS

We have introduced the physical-state recovery. This
section discusses how to checkpoint a system, i.e., how to
record system states that can be used for the recovery.

A. A Sliding Window Based Checkpointing Protocol

Checkpointing a system means occasionally storing the
state of the system on safe and secure devices. Note that
states in this section include both physical-state information
(i.e., estimated physical-states from sensor measurements)
and control inputs. The stored states are called checkpoints
or recovery points. If no failure has occurred, a checkpoint is
regarded as correct and thus a trustworthy state. The check-
point will be then stored and used for potential recoveries in
future. The protocol stipulates that detection is carried out
before saving system states. This stipulation will improve the
correctness of checkpoints and thus improves the probability
of successful recovery.

Protocol Operation. Fig. 3 illustrates the timing diagram
of the proposed protocol. The protocol has four major
components as follows.

(i) Detection window. The window size (of N sampling
periods) represents how many historical data are used for
detection, for example, N latest sensor measurements used
to detect sensor attacks/faults.

(ii) Buffered states (states from tk−N+1 to tk). The states
within the detection window are first buffered, i.e., pending

x x
t

ሺܠതିேିଵ, ିேିଵሻܝ ሺܠതିே, ିேሻܝ ሺܠത, ሻܝ

…

buffered statesdeleted states the stored state

detection window

ሺܠതିேାଵ, ିேାଵሻܝ

Figure 3. Timing diagram for checkpointing cyber-physical systems.

to be stored, because the detection has not yet given results
for them.

(iii) The stored state/checkpoint (the state at tk−N). The
checkpoint already passes the detection and is stored for
potential recoveries.

(iv) Deleted states (states from t0 to tk−N−1). When the
most recent correct checkpoint is enough for recovery, the
previous stored states or checkpoints are no longer needed
and thus can be discarded.

First, the protocol checkpoints the system at every sam-
pling period. To ensure the consistency of physical-states,
each checkpoint contains values of internal elements of the
same period. As illustrated in Fig. 3, at current time tk, the
protocol first buffers the state (xk,uk). The reason is that
within the detection window, there is no detection result
for the state, and whether it is correct is still unknown
yet. Consider sensor attacks as an example. Many existing
works, such as data-driven [12], [19], [22] and model-based
[15], [23] ones, use historical sensor measurements from
multiple sampling periods to perform attack detection. Upon
the detection of an attack, it is hard for these works to tell
the attack occurs at which time point within the detection
window, especially for attacks that modify information in
an unaggressive way. Note that the window size N , i.e.,
the number of historical data used for detection, is deter-
mined by a specific detection mechanism. For example, the
authors in [19] use a window size of 100 seconds for their
correlation-based detection mechanism, and thus N is the
number of data points within 100 seconds. The time here is
also called as detection delay, and N is used to represent
this delay.

Second, the buffered states that have moved outside
the detection window, are considered to have successfully
passed the detection and thus are regarded as correct states
if no failure (e.g., failures caused by compromised sensors)
is detected so far. As shown in Fig. 3, the checkpoint
at time tk−N is outside the detection window, and thus
state (xk−N ,uk−N) is saved. Storing after buffering can
eliminate the case of saving states between the occurrence
of an attack and its detection as well as the corresponding
latent failures caused by this case.

Thirdly, the protocol discards those checkpoints that are
no longer needed. As shown in Fig. 3, the checkpoint at time
tk−N−1 is discarded because the checkpoint at time tk−N
is newly stored and regarded as correct.

Introducing the detection window with a size of mul-

tiple sampling periods makes the proposed checkpointing
protocol different from many existing works such as [24],
[25], which assume instant detection upon the failures’
occurrence.

IV. A USE CASE: ADDRESSING SENSOR
ATTACKS/FAULTS

In this section, we present a use case of the CPS
checkpointing and recovery, which is the capability of ad-
dressing sensor attacks/faults. We assume the existence of
some mechanisms that can detect sensor attacks/faults. Our
method works with those mechanisms, that is, after they
discover some attacks/faults, the physical-state recovery will
be triggered to execute.

The threat model is as follows. First, we assume that
attackers are able to compromise sensor information, e.g.,
modifying it or preventing the controller from receiving it,
but they cannot compromise actuators. Second, the historical
information, including physical-states and control inputs, is
securely stored and cannot be compromised by attackers.

A. Handling Compromised Sensor Measurements

Attacks on sensors make them unreliable and thus the
estimated plant’s states based on their measurements also
become untrustworthy. Suppose that at current time tk,
some sensor attacks are detected, which cause values of
q internal elements compromised, i.e., there are q failed
internal elements. The following two sequential steps are
applied to handle the attacks.

Step 1: Physical-State Recovery. The physical-state
recovery uses Eqn. (4) to predict and estimate the current
system state. After the recovery, the first key question is
whether the estimated state x̃k is accurate enough to be
used for control. If x̃k is far from the plant’s realistic state,
the derived control inputs may drive the plant to drift even
further away. Let E be the vector that denotes the maximum
state estimation error that the system can tolerate. Given
Eqn. (9), if the estimation error satisfies

e+
k =

[
e+
k,(1,q)

e+
k,(q+1,n)

]
� E, (10)

then the estimated state x̃k is regarded acceptable and thus
can be used for control. Note that till now, the system
only carries out the physical-state recovery, which thus only
derives x̃k. No new control inputs for actuation have been
generated yet.

Step 2: Recovery-Based Resilient Control. With an
acceptable estimated state x̃k, this step is to control the
plant in presence of compromised sensor measurements,
where new control inputs will be generated for actuation. Let
tk+M ,M ≥ 1 denote the time after Mth sampling period
from the current time tk. Between time tk and tk+M , based

on the recovered state x̃k, we use Eqn. (11) to predict values
of the q failed internal elements, which is

x̂k+M,(1,q) =

[
AM x̃k +

M∑
i=1

Ai−1Buk+M−i

]
(1,q)

. (11)

For the n − q unfailed elements, use the value vector
estimated by yk+M = Cx̄k+M at time tk+M . Thus, at time
tk+M , the overall estimated state x̃k+M is

x̃k+M =

[
x̂k+M,(1,q)

x̄k+M,(q+1,n)

]
. (12)

Note that the proposed method, i.e., the physical-state
recovery combined with the resilient control, is triggered to
execute after some sensor attacks or faults are detected. In
other words, the method is an reactive mechanism that needs
to work with some existing detection mechanisms such as
[12], [19].

Conceptual Discussion. The defined recovery-based re-
silient control has some similarities and differences with
two established control concepts: open-loop control and
closed-loop control. (i) Compared with open-loop control,
one similarity is that both methods do not use measure-
ments of compromised sensors as feedback to a controller.
One difference is that the defined resilient control uses
the predicted state (based on the physical-state recovery)
and measurements of uncompromised sensors as feedback,
while open-loop control does not. (ii) Compared to closed-
loop control, both methods have feedback, but the content
of feedback is different. That is, one is based on sensor
measurements, while the other one is the predicted state of
failed internal elements as well as using measurements of
uncompromised sensors.

B. Drift Analysis

Between time tk and tk+M , the system may continue
drifting away, since the control relies on the predicted states
for the failed elements. Let ek+M to denote the overall error
accumulated from tk−N to tk+M . Given Eqn. (4)(12), we
can have

ek+M,(1,q) =
[
AN+Mδk−N

]
(1,q)

+

[
N+M∑
i=1

Ai−1vk+M−i

]
(1,q)

,

ek+M,(q+1,n) = δk+M,(q+1,n). (13)

And the corresponding bounded errors are thus

e+
k+M,(1,q) =

[
|AN+M |εδk−N

]
(1,q)

+

[
N+M∑
i=1

|Ai−1|εvk+M−i

]
(1,q)

,

e+
k+M,(q+1,n) = εδk+M,(q+1,n)

. (14)

Capability of the Recovery and Resilient Control.
As the system keeps operating under the recovery-based
resilient control, the drift ek+M can grow larger and larger
over time. When the drift cannot satisfy the maximum
tolerable estimation error, i.e., e+

k+M � E, the system ceases

࢞ ݐ 1 ൌ ࢞ ݐ ࢛ ݐ
࢟ ݐ ൌ ሻݐሺ࢞

࢞ Checkpointing

Estimation

Recovery

Prediction

Attacked
yes

no

࢞
P

I

D

࢛

‐

+
r

CONTROLLER

Figure 4. Control system diagram.

the resilient control and may need to reset the attacked
sensors or the portion under attack. In other words, the
proposed approach, i.e., the physical-state recovery together
with the resilient control, is a conservative way to deal
with sensor attacks, which is able to postpone resetting
the attacked sensors or the attacked portion. Resetting them
usually incurs much higher overhead (e.g., possibly pausing
the plant) to the system than does the proposed approach.

Further, different kinds of sensor attacks or faults can
affect the system with different time durations. That is, the
attacked sensors may become trustworthy again multiple
sampling periods later, or after even longer time, or never
[12]. Our method is generally applicable to all of these cases,
and its advantage is even more noticeable for short-term
attacks. That is, for sensor attacks causing transient failures
to internal elements or transient attacks, there is even no
need to reset them if they can become trustworthy before
the condition e+

k+M � E occurs. One possible situation
for short-term attacks is that attackers just have intermittent
physical access to attackees, e.g., an attacker uses some
device to attack camera or LiDAR sensors of a passing-by
autonomous car [11]. From this perspective, our method is
also a more lightweight way to deal with transient attacks.1

V. EVALUATION

To validate the CPS checkpointing and recovery and high-
light its benefits on addressing sensor attacks, we conduct
two experiments: one is simulator based and the other uses
an unmanned vehicle test bed. Both experiments have the
same control system diagram as illustrated by Fig. 4. The
controller consists of our approach and a PID controller.

A. Simulation-Based Evaluation

Settings and Model. The scenario considered for this
experiment is that the operator specifies the desired vehicle
speed, and the controller needs to ensure this speed as much
as possible even if the speed sensor/encoder is under attack.
We use Simulink to build a simulator where a DC motor

1Addressing how to reset attacked or faulty sensors is beyond the scope
of this paper.

(a) Conservativeness of the error
bound

(b) The trade-off between N and M

Figure 5. Simulation results about the physical-state recovery and resilient
control.

drives an inertial load. DC motors are widely used in electric
vehicles and many autonomous car prototypes. We use the
dynamic model of the DC motor given by[

i̇
ω̇

]
=

[
−RL −

Kb

L
Km

J − Kf

J

] [
i
ω

]
+

[
1
L
0

]
v, (15)

where the current i and the angular velocity ω are considered
as the two states of the system. The applied voltage v
is the control input, and the angular velocity ω is the
output. The parameters of the motor are set as follows.
The resistance R and the self-inductance L are set as 1
and 0.5 respectively. Both the armature constant Km and
the EMF constant Kb are set as 0.01. The viscous friction
constant Kf is 0.1. The inertial load J is 0.01. Sensor noise
(of the speed sensor/encoder) obeys Gaussian distribution
with the variance of 0.001. The reference velocity is set
as 2, and the required drift from the reference velocity is
within [−0.3, 0.3]. The sampling period is set as 0.01. We
implement the protocol proposed in Section III to checkpoint
the angular velocity ω, current i, and applied voltage v.
To ensure consistency, each system state records the three
parameters’ value of the same sampling period.

Simulation Results. Fig. 5(a) illustrates the conserva-
tiveness for the error bound of the predicted velocity. For
this figure, noise profiles vk are uniformly chosen from
[−0.015 + µ, 0.015 + µ], where µ is the mean. The y-
axis N indexes the maximum window size that the system
can tolerate, i.e., the furthest consistent state from which
the system can start the physical-state recovery as long as
the error is within the required range. The figure plots two
different cases based on the actual error (by Eqn. (6)) and
bounded error (by Eqn. (9)) respectively. We can see that
the former case has larger N than does the later case, i.e.,
by the actual error based case, the system can use a state
that is further back for the physical-state recovery. This
difference or the error bound’s conservativeness increases
as the absolute value |µ| decreases. When |µ| approaches to
zero, the number N of the actual error based case becomes
even larger (the corresponding data points are not shown in
the figure). On the other hand, when |µ| is large, the number

(a) Under attack/fault without protection

(b) Under attack/fault with protection

Figure 6. Comparison about actual, predicted and measured velocity
among cases with and without the physical-state recovery.

N of the two cases becomes similar and thus the error
bound’s conservativeness becomes low. Another observation
from the figure is that for both cases, the number N increases
as the value |µ| scales down. In addition, the above observa-
tions make the following indication. First, they indicate how
to choose among detection mechanisms to work with the
proposed checkpointing protocol, if different mechanisms
have different window sizes. The second indication is about
how to determine the window size to work with the proposed
checkpointing protocol, if a detection mechanism can use
multiple window sizes.

Fig. 5(b) demonstrates the result about the relationship
between the window size N and M (i.e., how far to go
forward for the recovery-based resilient control), when the
overall drift error is within the required range. For this figure,
noise profiles vk are uniformly chosen from [−0.01, 0.02].
The trade-off relationship is clear for the case based on the
bounded error (by Eqn. (9)(14)), which is as N increases
M decreases and vice versa. By contrast, there is no such
relationship for the case based on the actual error (by
Eqn. (6)(13)). Further, M of this case is larger than that of
the bounded error based case, i.e., it can enable longer time
for the recovery-based resilient control than the bounded

error based case. However, to ensure the required range of
drift errors, it should leverage the bounded error and its
corresponding trade-off relationship to determine N and M
for the checkpointing protocol proposed in Section III. In
other words, after choosing a detection mechanism (and thus
its corresponding window size), the time duration to run the
resilient control can be determined accordingly. In addition,
detection mechanisms with lower detection delay (i.e., a
smaller window size) can allow the system to execute the
resilient control for a longer time and thus further postpone
resetting the attacked components. This observation further
indicates the importance of fast detection. Note that this sim-
ulation is not show the performance of a specific detection
mechanism, but to demonstrate the impact of detection delay.

Fig. 6 shows comparison between two cases with and
without the protection of our approach. The attack on the
encoder starts from time 3 and ends at time 6, which
adds a constant value of 1.5 to each sensor measurement.
Noise profiles vk are uniformly chosen from [−0.01, 0.02],
i.e., the mean is a positive value of 0.005. As shown
by Fig. 6(a), if without physical-state recovery, the actual
velocity declines quickly to 0.5 after the attack starts at time
3. The measured velocity is 2 and equal to the reference
velocity but the measurement is untrustworthy, because the
attack adds 1.5 to each sensor measurement. The controller
uses this compromised measurement to derive control inputs,
which makes the actual velocity far from the reference value.

By contrast, Fig. 6(b) shows the result with the protection
of our approach. Between time 3 and time 3.2, our approach
has not been applied yet and thus the actual velocity de-
creases to 0.5 because of the attack. Note that 0.2 is the
time length of the sliding window as to the setting here.
At time 3.2, the system first carries out the physical-state
recovery to make a prediction on the system state (i.e.,
velocity). Comparing the red and blue curves, we can see
that the prediction of this time point is rather accurate with
little error. Then, the system performs the recovery-based
resilient control based on the prediction. Between time 3.2
and time 6, the controller depends on the predicted velocity,
instead of sensor measurements, to derive control inputs.
Although the predicted velocity is equal to the reference
value, the actual velocity gradually drifts from the reference
value due to the error accumulation caused by noise vk. We
can see that the drift here is much less than that in Fig. 6(a).
After the encoder becomes trustworthy again from time 6,
the controller switches to use sensor measurements and the
actual velocity turns to the reference value. There is no need
to rest the encoder, because the system has not drifted too
much (e.g., outside the required range) till the time when the
encoder comes back trustworthy. Hence, our approach well
protects the system from the transient attack. In addition, if
the attack continues after time 6 and lasts for longer time,
the system needs to cease the resilient control before it drifts
outside the required range.

Motors and Speed Sensors

BrickPi

Raspberry Pi
IR Sensor

Color Sensor

Figure 7. The unmanned vehicle test bed.

B. Case Study

Setup and Implementation. We have considered the
speed control in the previous subsection. In this subsection,
we consider a different scenario to further demonstrate the
capability of our approach, where the controller needs to
ensure the vehicle to travel in a straight line.

The unmanned vehicle test bed, as shown in Fig. 7, is
used for the illustration. The test bed assembles two boards:
Raspberry Pi and BrickPi. Raspberry Pi runs Linux OS and
interfaces with motors and sensors via drivers implemented
on BrickPi. The test bed uses the motors and sensors
available in Lego Mindstorms [26]. Each front wheel is
driven by a motor and each motor has a built-in speed sensor.
The test bed also assembles other two sensors, i.e., IR sensor
and color sensor, which can be used to detect and trace
objects. However, to illustrate the use of our design, we only
use the two speed sensors in this experiment. We implement
our design in C language.

Making turns of the vehicle is implemented in a manner
that the vehicle turns right (left) when the left (right) front
wheel travels at a higher speed than does the right (left)
front wheel. Thus, the front two wheels need to have the
same speed in order for the vehicle to travel in a straight
line. We use ∆ω to denote the difference between the speeds
of the two front wheels/motors, i.e., ∆ω = ωl−ωr, and use
∆v to denote the difference between the voltages applied
to the two motors, i.e., ∆v = vl − vr. We consider ∆ω and
∆v as the state and control input of the system, respectively.
The state space equation is

∆̇ω = −25

3
∆ω + 5∆v. (16)

Experimental Results. Fig. 8 presents the results of a
deployment during experiments carried out on a rough carpet
floor. The voltage value is bounded, and initially we set the
applied voltage to both motors as 50% of the bound. The
sensor attack starts at 2 sec and modifies each measurement
of the left speed sensor to be a constant value of 2π rad.
The sampling period is set to be 0.1 sec.

Fig. 8(a)8(b) plots the result about the system state ∆ω

and motors’ velocity for one time of experiment without the
protection of our approach. After the attack starts at 2 sec,
the measurement of the left motor fed into the controller is

(a) State ∆ω , under attack/fault no protection (b) Velocity, under attack/fault no protection

(c) State ∆ω , N = 10, under attack/fault with protection (d) Velocity, N = 10, under attack/fault with protection

Figure 8. Experimental results about a deployment during two experiments with and without protection of our approach.

compromised to be a rather large value (i.e., 2π rad). With
this compromised value, the applied voltage to the left motor
needs to decrease in order to achieve the reference state, i.e.,
the velocity of both motors is the same. However, this makes
the real velocity of the left motor decline to zero after several
periods, shown in Fig. 8(b). Thus, the realistic situation is
that the velocity difference between the two motors is large,
shown in Fig. 8(a). The real system state is far from the
reference value, and the vehicle keeps making turns instead
of travelling in a straight line.

Fig. 8(c)8(d) demonstrates the result for one time of
experiment with the protection of our approach. The window
size N is set as 10, which means that the physical-state
recovery occurs at 3 sec as to the setting here. The recovery-
based resilient control also starts at this time point. Between
2 sec and 3 sec, the system is under attack and the physical-
state recovery has not started yet. Thus, during this time
interval, the velocity of the left motor declines to zero and
the system state is far from the reference state. After 3 sec,
the physical-state recovery and resilient control are brought
on-line to start control the vehicle using the predicted state.
At first, the system state is very close to the reference state,
shown in Fig. 8(c), that is, the velocity of the two motors is
nearly the same, shown in Fig. 8(d). This indicates that the
prediction by the physical-state recovery is rather accurate.
As time goes on, under the resilient control, the system state
slowly drifts away, and the velocity difference grows little
by little. The drift here is much less than that of Fig. 8(a),
and grows not so fast.

VI. RELATED WORK

Checkpointing and Recovery. Checkpointing protocols
evolve significantly from the earliest works that employ
synchronized checkpointing such as [27]–[29], to the recent
works that leverage various consistency-guaranteed meth-
ods to allow asynchronized checkpointing, such as [21],
[30], [31]. These approaches record cyber-states while our
approach checkpoints physical-states and control inputs.

Further, the stored physical-states and control inputs of an
individual checkpoint are all in the same sampling period.
From this perspective, our approach can be seen as syn-
chronized checkpointing. Furthermore, our checkpointing
protocol explicitly considers detection delay. This makes it
different from protocols such as [24], [25], which assumes
instant detection upon attacks’ or faults’ occurrence.

Handling Sensor Attacks. There are many defense tech-
niques that improve system resilience against sensor attacks,
such as [6], [16]–[18]. Most of them confine to systems with
sensor redundancy, that is, multiple sensors (partially) mea-
sure the same physical variables. As the case with no sensor
redundancy or when all redundant sensors are compromised,
they do not work. By contrast, our approach has no such
limitations and thus comes with wider applicability.

VII. CONCLUSION

In this work, we have studied the problem of enhancing
attack-resilience for a CPS system under attacks on the
environment of the controller such as attacks on sensors.
We have developed a procedure of CPS checkpointing and
recovery. Firstly, we propose a new concept of physical-
state recovery, which is defined as rolling the system for-
ward to match values of internal elements with the states
of the plant. Secondly, we design a slide window based
checkpointing protocol that defines how to record system
states for the recovery. The proposed procedure possesses
several advantages including low overhead to the system,
no modification to the existing controller, and no limitations
about sensor redundancy. Thirdly, we present a use case
of the procedure on handling sensor attacks. Finally, we
validate the feasibility of our design using a DC motor
simulator and an unmanned vehicle case study.

ACKNOWLEDGMENT

This work was supported in part by NSF CNS-1505799,
the Intel-NSF Partnership for Cyber-Physical Systems Secu-
rity and Privacy, and ONR N000141712012.

REFERENCES

[1] A. M. Wyglinski, X. Huang, T. Padir, L. Lai, T. R. Eisen-
barth, and K. Venkatasubramanian, “Security of autonomous
systems employing embedded computing and sensors,” IEEE
micro, 2013.

[2] M. Amoozadeh, A. Raghuramu, C.-N. Chuah, D. Ghosal,
H. M. Zhang, J. Rowe, and K. Levitt, “Security vulnerabilities
of connected vehicle streams and their impact on cooperative
driving,” IEEE Communications Magazine, 2015.

[3] S. Parkinson, P. Ward, K. Wilson, and J. Miller, “Cyber
threats facing autonomous and connected vehicles: Future
challenges,” IEEE Transactions on Intelligent Transportation
Systems, 2017.

[4] A. A. Cardenas, S. Amin, and S. Sastry, “Secure control:
Towards survivable cyber-physical systems,” in International
Conference on Distributed Computing Systems Workshops
(ICDCSW). IEEE, 2008.

[5] N. Adam, “Workshop on future directions in cyber-physical
systems security,” Department of Homeland Security, Tech.
Rep., January 2010.

[6] M. Pajic, J. Weimer, N. Bezzo, P. Tabuada, O. Sokolsky,
I. Lee, and G. J. Pappas, “Robustness of attack-resilient
state estimators,” in ACM/IEEE International Conference on
Cyber-Physical Systems (ICCPS). IEEE, 2014.

[7] S. Checkoway, D. McCoy, B. Kantor, D. Anderson,
H. Shacham, S. Savage, K. Koscher, A. Czeskis, F. Roesner,
T. Kohno et al., “Comprehensive experimental analyses of
automotive attack surfaces.” in USENIX Security Symposium.
San Francisco, 2011.

[8] K.-T. Cho and K. G. Shin, “Error handling of in-vehicle
networks makes them vulnerable,” in ACM Conference on
Computer and Communications Security (CCS). ACM, 2016.

[9] Y. Shoukry, P. Martin, P. Tabuada, and M. Srivastava, “Non-
invasive spoofing attacks for anti-lock braking systems,” in
International Workshop on Cryptographic Hardware and Em-
bedded Systems. Springer, 2013.

[10] A. H. Rutkin, ““spoofers” use fake gps signals to knock a
yacht off course,” MIT Technology Review, August 14, 2013.

[11] J. Petit, B. Stottelaar, M. Feiri, and F. Kargl, “Remote attacks
on automated vehicles sensors: Experiments on camera and
lidar,” Black Hat Europe, 2015.

[12] R. Mitchell and I.-R. Chen, “A survey of intrusion detection
techniques for cyber-physical systems,” ACM Computing Sur-
veys, 2014.

[13] F. Pasqualetti, F. Dörfler, and F. Bullo, “Attack detection and
identification in cyber-physical systems,” IEEE Transactions
on Automatic Control, 2013.

[14] J. Park, R. Ivanov, J. Weimer, M. Pajic, and I. Lee, “Sen-
sor attack detection in the presence of transient faults,”
in ACM/IEEE International Conference on Cyber-Physical
Systems (ICCPS). ACM, 2015.

[15] Z. Feng, N. Guan, M. Lv, W. Liu, Q. Deng, X. Liu, and
W. Yi, “Efficient drone hijacking detection using onboard
motion sensors,” in Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 2017.

[16] H. Fawzi, P. Tabuada, and S. Diggavi, “Secure estimation and
control for cyber-physical systems under adversarial attacks,”
IEEE Transactions on Automatic Control, 2014.

[17] R. Ivanov, M. Pajic, and I. Lee, “Attack-resilient sensor fusion
for safety-critical cyber-physical systems,” ACM Transactions
on Embedded Computing Systems, 2016.

[18] S. Z. Yong, M. Zhu, and E. Frazzoli, “Resilient state esti-
mation against switching attacks on stochastic cyber-physical
systems,” in IEEE 54th Annual Conference on Decision and
Control (CDC). IEEE, 2015.

[19] A. Ganesan, J. Rao, and K. Shin, “Exploiting consistency
among heterogeneous sensors for vehicle anomaly detection,”
SAE Technical Paper, Tech. Rep., 2017.

[20] P. S. Duggirala, T. T. Johnson, A. Zimmerman, and S. Mitra,
“Static and dynamic analysis of timed distributed traces,” in
IEEE Real-Time Systems Symposium (RTSS). IEEE, 2012.

[21] E. N. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson,
“A survey of rollback-recovery protocols in message-passing
systems,” ACM Computing Surveys, 2002.

[22] S. N. Narayanan, S. Mittal, and A. Joshi, “Using data ana-
lytics to detect anomalous states in vehicles,” arXiv preprint
arXiv:1512.08048, 2015.

[23] P. Uppuluri and R. Sekar, “Experiences with specification-
based intrusion detection,” in Recent Advances in Intrusion
Detection. Springer, 2001.

[24] S. Punnekkat, A. Burns, and R. Davis, “Analysis of check-
pointing for real-time systems,” Real-Time Systems, 2001.

[25] E. Gelenbe and D. Derochette, “Performance of rollback re-
covery systems under intermittent failures,” Communications
of the ACM, 1978.

[26] Lego, “31313 Mindstorms EV3,” https://www.lego.com/en-
us/mindstorms/products/mindstorms-ev3-31313.

[27] Y. Tamir and C. H. Sequin, “Error recovery in multicomputers
using global checkpoints,” in International Conference on
Parallel Processing. IEEE, 1984.

[28] K. M. Chandy and L. Lamport, “Distributed snapshots: De-
termining global states of distributed systems,” ACM Trans-
actions on Computer Systems, 1985.

[29] K. G. Shin, T.-H. Lin, and Y.-H. Lee, “Optimal checkpointing
of real-time tasks,” IEEE Transactions on computers, 1987.

[30] D. B. Johnson, “Distributed system fault tolerance using
message logging and checkpointing,” Ph.D. dissertation, Rice
University, 1990.

[31] K.-F. Ssu, B. Yao, and W. K. Fuchs, “An adaptive checkpoint-
ing protocol to bound recovery time with message logging,”
in IEEE Symposium on Reliable Distributed Systems. IEEE,
1999.

	University of Pennsylvania
	ScholarlyCommons
	4-2018

	Cyber-Physical System Checkpointing and Recovery
	Fanxin Kong
	Meng Xu
	James Weimer
	Oleg Sokolsky
	Insup Lee
	Recommended Citation

	Cyber-Physical System Checkpointing and Recovery
	Abstract
	Disciplines
	Comments

	tmp.1529618285.pdf.Nw_3W

