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5 Abstract—In this paper, the joint optimization problem with energy efficiency and effective resource utilization is investigated for

6 heterogeneous and distributed multi-core embedded systems. The system model is considered to be fully a heterogeneous model, that

7 is, all nodes have different maximum speeds and power consumption levels from the perspective of hardware while they can employ

8 different scheduling strategies from the perspective of applications. Since the concerned problem by nature is a multi-constrained and

9 multi-variable optimization problem in which a closed-form solution cannot be obtained, our aim is to propose a power allocation and

10 load balancing strategy based on Lagrange theory. Furthermore, when the problem cannot be fully solved by Lagrange approach, a

11 data fitting method is employed to obtain core speed first, and then load balancing schedule is solved by Lagrange method. Several

12 numerical examples are given to show the effectiveness of the proposed method and to demonstrate the impact of each factor to the

13 present optimization system. Finally, simulation and practical evaluations show that the theoretical results are consistent with the

14 practical results. To the best of our knowledge, this is the first work that combines load balancing, energy efficiency, hardware

15 heterogeneity and application heterogeneity in heterogeneous and distributed embedded systems.

16 Index Terms—Embedded and distributed systems, energy efficiency, effective resource utilization, load distribution, power allocation,

17 queueing model

Ç

18 1 INTRODUCTION

19 1.1 Motivation

20 A typical complex embedded system will have a hetero-
21 geneous distributed multi-core architecture that can
22 respond to a variety of complicated computational requests
23 at the application level. It is common for complex embedded
24 systems, such as automotive electronics and avionics sys-
25 tems, to have over 60 Electronic Control Units (ECUs)[30],
26 with each ECU dedicated to handling numerous tasks of
27 different sizes and levels of urgency. As the complexity of
28 embedded systems continues to increase to meet the
29 demands of modern applications for increased computa-
30 tional power and performance, the need for energy efficiency
31 and effective resource utilization will become increasingly
32 significant. Current and future embedded systems must
33 be able to assign general tasks to nodes in a manner that

34improves resource utilization without affecting dedicated
35tasks. Power must be allocated reasonably to each node in
36order to achieve minimum power usage by the system.
37Attaining optimal allocation of tasks and power in a distrib-
38uted system is a well-known multi-variable optimization
39problem. In light of these issues, the development of hetero-
40geneous distributed embedded systems is challenging.
41In heterogeneous systems, the architecture of each node
42may differ, so the characteristics of nodes may vary. Each
43node might have different maximum and minimum core
44speed, or a different power consumption level [29]. The per-
45formance of the overall system can be influenced by any
46node. Therefore, to achieve energy efficiency in heteroge-
47neous environments, the characteristics of each node must
48be considered carefully. From the point of view of distrib-
49uted systems, each node is assigned preloaded dedicated
50tasks, and each task may have different task arrival rate and
51task size. To achieve effective utilization of resources, a dis-
52tributed system requires an efficient load balancing algo-
53rithm that can assign tasks appropriately to each node. From
54the point of view of embedded systems, dedicated tasks exe-
55cuted on specified nodes are more important or urgent than
56general tasks. Moreover, each class of dedicated tasks has a
57different degree of urgency. To utilize all the available
58resources efficiently, each node should be set with an appro-
59priate scheduling policy corresponding to the degree of
60urgency of dedicated tasks assigned to it. From the point of
61view of the overall system, computing performance is a vital
62metric when a system’s Quality of Service (QoS) is being
63evaluated. Thus, the QoS still needs to be guaranteed.
64Balancing all of these factors is a challenge for the develop-
65ment of heterogeneous distributed and embedded systems
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66 that are both energy efficient and making the best use of
67 resources. Although there are many studies of the diverse
68 aspects this problem, most of the existing research don’t con-
69 sider these factors jointly. Therefore, it is important to study
70 how energy efficiency and high resource utilization can be
71 achieved together on heterogeneous and distributed embed-
72 ded systems.

73 1.2 Our Contributions

74 In this paper, we study the problem of assigning a set of
75 general tasks to the computing nodes of a computational
76 heterogeneous distributed embedded system, wherein each
77 node is preloaded with a different number of dedicated
78 tasks, equipped with a DVFS feature. The structure of the
79 system is shown in Fig. 1. A node can be treated as a compu-
80 tational unit, which may include processor, memory etc.
81 Changing a node from its sleep state to a running state
82 takes a long time [1]. In embedded environments, a node
83 may be assigned important tasks that cannot be delayed.
84 Consequently, we don’t have the option to put an embed-
85 ded node to sleep, even if its core is not working. In our
86 investigations, to balance the power consumption and time
87 delay, we assume that a core continues to run at a low fre-
88 quency even when it is idle. Clearly, the power consump-
89 tion differs when the core is working and when it is not
90 working. Therefore, the cores can be considered to have two
91 distinct modes [25]:

92 � Core busy-power: The power consumption of a core
93 when there are tasks running on the core, is the
94 major power consumption of a core.
95 � Core idle-power: The power consumption of a core
96 when there is no task running.
97 We view each node as an M/M/1 queueing model with
98 infinite waiting queue capacity [24], and define three queue-
99 ing disciplines-Discipline 1, Discipline 2, and Discipline 3-

100 each one of which could be employed by any node. The
101 details of the disciplines are as follows:

102 � Discipline 1: All general tasks and dedicated tasks on
103 this node are scheduled on a first-come, first-served
104 basis, without priority. We identify this discipline as,
105 “dedicated tasks without priority.”

106� Discipline 2: On this node, the queueing principle is
107that dedicated tasks are always scheduled before
108general tasks. All tasks are executed without inter-
109ruption. We identify this discipline as, “prioritized
110dedicated tasks without preemption.”
111� Discipline 3: Dedicated tasks are always scheduled
112before general tasks on this node, with preemption.
113We term this discipline as, “prioritized dedicated
114tasks with preemption.”
115Our aim is to find the minimum overall power consump-
116tion of the system, along with the response time of general
117tasks, within an acceptable range. Our major contributions
118are as follows:

119� To the best of our knowledge, this work is the first
120study of the minimum power consumption problem
121in heterogeneous distributed embedded systems
122that considers the load distribution in combination
123with the characteristics, queuing discipline, and idle
124speed of each node.
125� We propose an algorithm for finding the optimal
126load distribution and power allocation scheme of the
127system, such that the overall power consumption of
128the system is minimized.
129� We are the first to take the optimal solutions as train-
130ing data to fit the relationship between the task size
131and core speed, and then use optimal load balancing
132to solve the problem when the problem cannot be
133solved by a Lagrangian system. Experimental results
134show this strategy to be efficient.
135� Based on our algorithm, we show the influence of dif-
136ferent parameters on the optimal power allocation
137and load distribution. These parameters include idle
138speed of core, as well as power consumption expo-
139nent a, preloaded tasks, queueing discipline, and
140number of nodes in the system. We provide numeri-
141cal examples to demonstrate the effectiveness of our
142algorithm for each parameter. Furthermore, we give
143an example where all parameters are different. Simu-
144lation and practical evaluations show that the theoret-
145ical results are consistent with the practical results.
146Our study focuses on a well-defined, multi-constrained,
147and multi-variable optimization problem. The investigation
148in this paper has made significant contribution to high-
149performance and energy-efficient computing in modern het-
150erogeneous and distributed embedded systems.

1512 RELATED WORK

152Because energy efficiency is a primary concern for embed-
153ded systems, especially for systems with limited power, this
154topic has been studied extensively, and a large body of litera-
155ture exists [2], [3], [4], [5], [6]. In recent years, supercomputer
156operators also have paid considerable attention on energy
157efficiency because supercomputers have very large power
158requirements. While supercomputers are focused on perfor-
159mance as their most significant metric, the technique used by
160embedded systems to achieve energy efficiency is similar to
161that of supercomputers. Energy efficiency is about making
162power consumption proportional to system utilization [20]
163in a manner that decreases unnecessary energy loss. There
164are many approaches to achieving power reduction. Most

Fig. 1. System structure.
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165 commonly, dynamic voltage and frequency scaling (DVFS)
166 [22], [23] is implemented at the operating system level to
167 manage power and to regulate the frequency and voltage of
168 CPUs. Generally speaking, two DVFS techniques exist for
169 multi-core systems: One is global DVFS, which scales the fre-
170 quency and voltage of all the cores simultaneously, and the
171 other is local DVFS, which regulates the frequency and volt-
172 age on a per core basis [7]. Experiments indicated that local
173 DVFS could achieve better performance than global DVFS
174 [8], [9], but it is more complicated.
175 The energy efficiency of embedded systems has been stud-
176 ied by a number of researchers. Because the architectures and
177 applications for embedded systems are quite diverse,
178 researchers have needed to establish various theories to study
179 the problem of energy efficiency in these different systems. In
180 [26], the authors investigated the tradeoff between inter-appli-
181 cation concurrency with performance and power consump-
182 tion under various system configurations. They proposed a
183 runtime optimization approach to achieve energy efficiency,
184 implemented on a real platform called Odroid XU- 3. In [27],
185 the minimum energy consumption was obtained based on a
186 running model generated through regression-based learning
187 of energy/performance trade-offs between different comput-
188 ing resources in the system. In [28], to support application
189 quality of service and to save energy, an energy-efficient soft
190 real-time CPU scheduler for mobile devices was proposed
191 that primarily ranmultimedia applications.
192 In addition to embedded computing, energy efficiency
193 also plays an important role in cloud computing, which is
194 marked by huge and increasing power consumption. The
195 techniques for achieving energy efficiency used in multi-
196 core embedded systems and cloud computing systems are
197 similar. Therefore, they could learn from each other. In [10],
198 the author used DVFS and workload dependent dynamic
199 power management to improve system performance and to
200 reduce energy consumption. In [11], based on a cooperative
201 game-theoretical approach and DVFS technology, the
202 authors investigated the problem of allocating tasks onto a
203 computational grid, with the aim of minimizing simulta-
204 neously the energy consumption and the makespan. In [12],
205 the authors also employed a game-theoretic approach to
206 study the problem of minimizing energy consumption in a
207 distributed system.
208 An efficient load balancing strategy is a key component
209 to building out any distributed architecture. The complexi-
210 ties are reflected in the extensive body of literature on the
211 topic, as exemplified by the excellent reference collection
212 given in [13]. The purpose of load balancing is to assign
213 tasks appropriately to nodes in terms of the workload and
214 computing power of each node. In [15], researchers pro-
215 posed a fault tolerant, hybrid load balancing strategy for a
216 heterogeneous grid computing environment. In [16], the
217 authors addressed the problem of optimal load balancing of
218 tasks when power is constrained.
219 The queueing discipline has also been studied widely. In
220 [14], two types of cases were considered, namely, systems
221 with and without special tasks. The authors addressed the
222 problem of minimizing the average response time of generic
223 tasks. Both [17] and [18] studied optimal load distribution in
224 heterogeneous distributed computer systems with both
225 generic and dedicated applications. In [17], each node was

226modeled as an M/G/1 non-preemptive queuing system,
227and was applied to several types of dedicated tasks, while
228in [18], each node was treated as an M/M/1 non-
229preemptive queuing system. The authors of [19] assumed
230that each node was preloaded with dedicated tasks, and
231three conditions were taken into account: Dedicated tasks
232without priority, and prioritized dedicated tasks with and
233without preemption. Each node was treated as an M/G/1
234queueing system, and the authors focused on the problem
235of optimal load balancing of general tasks.
236In distributed heterogeneous embedded systems, in
237order to achieve energy efficiency and effective utilization
238of resources, it is necessary to consider the combination of
239node heterogeneity, applications urgency (priority of tasks,
240which might be different for each node), energy efficiency,
241and the idle CPU state. To the best of our knowledge, pres-
242ent studies on load balancing and energy efficiency have
243not considered fully all of these factors together.

2443 SYSTEM MODEL AND PROBLEM FORMULATION

2453.1 Power Model

246The power dissipation of an embedded processor core
247mainly consists of three parts, namely, dynamic, static, and
248short-circuits consumption, among which dynamic power
249consumption is the dominant component. The dynamic
250power consumption can be expressed by P ¼ kCV 2f where
251k is an activity factor, C is the loading capacitance, V is the
252supply voltage, and f is the clock frequency. Given that
253s / f and f / V , then Pi / s

ai
i , where ai is around 3 [21].

254For ease of discussion, we model the power allocated to pro-
255cessor core with speed si as si

ai .
256The core busy-power is different from core idle-power. There
257are implied energy-frequency and frequency-performance
258relations. In this paper, the performance (speed) is defined
259as the number of instructions a core can perform per second
260(IPS). Therefor, the dynamic power is si

ai when the core is
261working at frequency fi and the corresponding speed is si.
262When a core is not working, because there are no instruc-
263tions to perform, it is inappropriate to define the core speed
264directly. In that case, our research focuses on the power con-
265sumption rather than core speed. Therefore, when the core
266is idle, we assume the speed to be sIi, corresponding to a
267frequency fi, such that sIi

ai equals the actual power of the
268core, i.e., sIi

ai ¼ CVi
2fi. A processor core still consumes

269some amount of basic power P �i that includes static power
270dissipation, short circuit power dissipation, and other lea-
271kages and wasted power. Therefore, the power model can
272be formulated as

Pi ¼ ðsaii þ P �i Þri þ ðsaiIi þ P �i Þð1� riÞ
¼ ris

ai
i þ 1� rið ÞsaiIi þ P �i

¼ b�ibrþ e�ieri� �
s
ai�1
i þ 1�

b�ibrþ e�ieri
s
ai
i

 !
s
ai
Ii þ P �i :

(1)

274274

275

2763.2 Queueing Model

277The queueingmodel is used to formulate and study the prob-
278lem of power allocation and load balancing in a heteroge-
279neous distributed embedded environments. Taking n as the
280number of heterogeneous embedded computing nodes
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281 v1; v2; . . . ; vn (simply called as a node), each of which has its
282 own dedicated set of jobs that follow a Poisson stream of
283 tasks with arrival rate e�i that can only be executed on it.
284 There exists a general Poisson stream of tasks with arrival
285 rate b� that needs to be executed by being split into n sub-
286 streams b�i assigned to each node. Thus, each node deals with
287 a combined stream of dedicated and general tasks. The task
288 size of dedicated and general tasks are exponential random
289 variables rdi and rg, respectively, with mean eri and br, respec-
290 tively. Thus, the two types of mean execution times on node
291 vi are exi ¼ eri=si; bxi ¼ br=si, respectively. Since the arrival rate
292 and processing rate of tasks are subject to Poisson distribu-
293 tion, we can treat each node as an M/M/1 queueing system.
294 Parameters used are shown in Table 1. To maintain the
295 queue steady, we assume that ri < 1, for all 1 � i � n.

296 3.3 Problem Formulation

297 We specify our multi-variable optimization problem as fol-
298 lows: given n numbers of embedded nodes v1; v2; . . . ; vn, the
299 arrival rates e�1; e�2; . . . ; e�n and average task size er1; er2; . . . ; ern
300 of dedicated tasks on each node, the total arrival rate b� and
301 average task size br of general tasks, the idle-speed sI1;
302 sI2; . . . ; sIn, base power supply P �1 ; P

�
2 ; . . . ; P

�
n , queueing dis-

303 cipline of each node, and the acceptable response time bT of
304 generic tasks, find the task arrival rates b�1; b�2; . . . ; b�n and
305 core speeds s1; s2; . . . ; sn on each node such that the power
306 consumption of the system P ¼Pn

i¼1 Pi is minimized while
307 satisfying the following constraints

b�1 þ b�2 þ � � � þ b�n ¼ b�; (2)
309309

310

b�1

�
bT1 þ

b�2

�
bT2 þ � � � þ

b�n

�
bTn � bT: (3)

312312

313

314 4 THE PROPOSED METHOD

315 Each node is treated as an M/M/1 queuing system and has
316 different queuing disciplines. Different queuing disciplines
317 have different expressions of response time of general tasks.
318 Thus, all nodes are divided into three groups according to
319 the queuing discipline. We assume that group G1 includes

320all those nodes whose queuing discipline is dedicated tasks
321without priority, group G2 includes all those nodes whose
322queuing discipline is prioritized dedicated taskswithout pre-
323emption, and groupG3 includes all those nodeswhose queu-
324ing discipline is prioritized dedicated taskswith preemption.
325Let bTi denote the response time of generic tasks on node vi.
326For node vi belongs to groupG1 (vi 2 G1), we have [24, p. 700]

bTi ¼ br
si
þ

b�ibr2 þ e�ieri2
si si � b�ibr� e�ieri� � : (4)

328328

329For node vi belongs to groupG2 (vi 2 G2), we have [24, p. 702]

bTi ¼ br
si
þ

b�ibr2 þ e�ieri2
si � e�ieri� �

si � e�ieri � b�ibr� � : (5)

331331

332For node vi belongs to groupG3 (vi 2 G3), we have [24, p. 704]

bTi ¼ 1

si � e�ieri brþ b�ibr2 þ e�ieri2
si � e�ieri � b�ibr

 !
: (6)

334334

335Our objective function is

P b�1; b�2; . . . ; b�n; s1; s2; . . . ; sn

� �
¼
Xn
i¼1

b�ibrþe�ieri� �
si

ai�1
�

þ 1�
b�ibrþe�ieri

si

 !
sIi

ai þ P �i

!
;

(7)

337337

338subject to X
vi2G1

b�i

�
bT i þ

X
vj2G2

b�j

�
bTj þ

X
vk2G3

b�k

�
bTk � bT;

340340

341and b�1 þ b�2 þ � � � þ b�n ¼ b�: 343343

344

345Since the background of this problem is clear, we can use
346Lagrange system to solve our problem. We set

c b�1; b�2; . . . ; b�n; s1; s2; . . . ; sn

� �
¼ bT � 1b� X

vi2G1

b�i
bT i þ

X
vi2G2

b�i
bT i þ

X
vi2G3

b�i
bT i

 !
; (8)

348348

349and

’ b�1; b�2; . . . ; b�n

� �
¼ b�1 þ b�2 þ � � � þ b�n � b�; (9)

351351

352as two constraint functions. According to Lagrange system,
353we have

rP ¼ fr’ðb�1; b�2; . . . ; b�nÞ
þ trcðb�1; b�2; . . . ; b�n; s1; s2; . . . ; snÞ; 355355

356that is,

@P

@b�i

¼ f
@’ b�1; b�2; . . . ; b�n

� �
@b�i

þ t
@c b�1; b�2; . . . ; b�n; s1; s2; . . . ; sn

� �
@b�i

;

(10)

358358

TABLE 1
Mathematical Notations in This Paper

Symbol Definition

si The core speed of node vi when it’s core is busy
sIi The core speed of node vi when it’s core is idle
ai power consumption exponente�i Arrival rate of dedicated tasks to vib�i Arrival rate of general tasks to vi
�i ¼ e�i þ b�ib� ¼ b�1 þ b�2 þ � � � þ b�nbr Average task size of general taskseri Average task size of dedicated tasks on viexi ¼ eri=si Average execution time of dedicated tasks on vibxi ¼ br=si Average execution time of general tasks on vibri b�i � bxi ¼ b�ibr.sieri e�i � exi ¼ e�ieri.si
ri ¼ bri þ eri Average percentage of time that node vi is busybTi Average response time of general tasks on vibT Acceptable time of general tasks on system
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359 for all 1 � i � n, where f and t are two Lagrange multi-
360 pliers, and

@P

@si
¼ f

@’ b�1; b�2; . . . ; b�n

� �
@si

þ t
@c b�1; b�2; . . . ; b�n; s1; s2; . . . ; sn

� �
@si

:

(11)

362362

363 Based on Equation (10), we get

brsiai�1 � brsIiai
si
¼ f� t bT i þ b�i

@ bT i

@b�i

 !
; (12)

365365

366 where for all vi 2 G1, we have

@ bT i

@b�i

¼
br2 si � e�ieri� �

þ e�ieri2br
si si � e�ieri � b�ibr� �2 ;

368368

369 for all vi 2 G2, we have

@ bT i

@b�i

¼ br
si
þ

2b�ibr2 þ e�ieri2� �
si � e�ieri� �

� b�i

2br3
si � e�ieri� �

si � e�ieri � b�ibr� �2 ;

371371

372 for all vi 2 G3, we have

@ bT i

@b�i

¼
br2 si � e�ieri� �

þ e�ibreri2
si � e�ieri� �

si � b�ibr� e�ieri� �2 :
374374

375 Based on Equation (12), for all vi 2 G1, we can get

b�i

2
ai þ b�ibi þ ci ¼ 0; (13)

377377

378 where

ai ¼ br2Ri;

bi ¼ �2 si � e�ieri� �brRi;

ci ¼ � br�Rið Þ si � e�ieri� �
þ e�ieri2� �

si � e�ieri� �
;

Ri ¼ fsi þ brsIiai � brsiai
tsi

:

380380

381 Solving Equation (13), we can obtain

b�i ¼ tibr � 1br
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ti brti þ e�ieri2� �

t

di

vuut
; (14)

383383

384 for all vi 2 G1; similarly, based on Equation (12), we can get

b�i ¼ tibr � 1br
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ti brti þ e�ieri2� �

si

diti=t þ bre�ieri
vuut

; (15)

386386

387 for all vi 2 G2; and

b�i ¼ si � e�ieribr � 1br
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibrti þ e�ieri2� �

tsi

di

vuut
; (16)

389389

390for all vi 2 G3, where

ti ¼ si � e�ieri; di ¼ brsIiai þ fsi � brsiai : 392392

393

394Based on Equation (11), we take the partial derivative
395with respect to si, that is,

�tb�i
@ bT i

@si
¼ ai � 1ð Þ b�ibrþe�ieri� �

si
ai�2

þ
b�ibrþe�ieri� �

si2
sIi

ai ;

(17)

397397

398where for all vi 2 G1 we have

@ bT i

@si
¼ � br

si2
þ

b�ibr2 þ e�ieri2� �
2si � b�ibr� e�ieri� �

si2 si � b�ibr� e�ieri� �2
0B@

1CA;

400400

401for all vi 2 G2 we have

@Ti

@si
¼ � br

si2
�

b�ibr2 þ e�ieri2� �
2 si � e�ieri� �

� b�ibr� �
si � e�ieri� �2

si � e�ieri � b�ibr� �2 ;

403403

404and for all vi 2 G3 we have

@ bT i

@si
¼ �

b�ibr2 þ e�ieri2� �
2 si � e�ieri� �

� b�ibr� �
si � e�ieri � b�ibr� �2 þ br

0B@
1CA

� 1

si � e�ieri� �2 :
406406

407

408Through taking the derivative with respect to b�i and si
409respectively, we have obtained the Equations (14), (15), (16)
410and (17) for all 1 � i � n. Basing on these Equations, our
411problem is modified to find the appropriate f, t and each
412node speed si to satisfy the conditions Equations (2) and (3).
413This is a well-defined multi-variable optimization prob-
414lem which is difficult to get a closed-form solution espe-
415cially that different queueing disciplines have different

416expressions of b�i and @ bT i

.
@si. Thus, we have to devise the

417numerical solution. We consider

fiðsi;f; tÞ ¼

tibr � 1br
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ti brti þ e�ieri2� �

t

di

vuut
; vi 2 G1;

tibr � 1br
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ti brti þ e�ieri2� �

si

diti=t þ bre�ieri
vuut

; vi 2 G2;

tibr � 1br
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibrti þ e�ieri2� �

tsi

di

vuut
; vi 2 G3;

8>>>>>>>>>>>><>>>>>>>>>>>>:
(18)

419419

420and

giðsi; b�iÞ ¼
b�ibrþe�ieri
�b�i@ bT i

.
@si

ai � 1ð Þsiai�2 þ sIi
ai

si2

� �
; (19)

422422

423where

ti ¼ si � e�ieri; di ¼ brsIiai þ fsi � brsiai : 425425

426
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427 Since b�i is viewed as a function of si, f and t, and t is
428 treated as a function of si and b�i, it needs to find the domain
429 definition of functions fiðsi;f; tÞ and giðsi; b�iÞ. The tasks
430 arrival rate b�i must be larger than zero, and ri < 1. Hence,
431 we have

b�i � 0;
si � e�ieri � b�ibr � 0;brsIiai þ fsi � brsiai > 0;

8<: (20)

433433

434 for all 1 � i � n.
435 In real situations of distributed environments, ai may be a
436 decimal and not the same for different nodes, therefore, it is
437 impossible to obtain a closed-form solution of Equation (20).
438 We shall give the numerical solution in Section 5.
439 How to obtain the appropriate b�i, si, f and t based on
440 fiðsi;f; tÞ and giðsi; b�iÞ that can satisfy constraint conditions
441 Equations (2) and (3) will be introduced in Section 5. We
442 give the derivations with respect to si of function fiðsi;f; tÞ
443 and giðsi; b�iÞ, which will be used in Section 5

fi
0ðsi;f; tÞ ¼ 1br � hi

0ðsiÞbr2 ffiffiffiffiffiffiffiffiffiffiffiffi
hiðsiÞ

p ;

445445

446 where hiðsiÞ ¼ tiHit

di
, and

hi
0ðsiÞ ¼ t

di
brti þHi 1� ti f� aibrsiai�1ð Þ

di

� �� �
;

448448

449 for all vi 2 G1; hi sið Þ ¼ tiHisit

diti þ tbre�ieri, and
hi
0 sið Þ ¼ t

Hi þ tibrð Þsi þ tiHi

diti þ tbre�ieri � di
0ti þ dið ÞtiHisi

diti þ tbre�ieri� �2
0B@

1CA;

451451

452 for all vi 2 G2; hðsiÞ ¼ Hitsi
di

, and

h0ðsiÞ ¼ t
brsi þHið Þdi � di

0Hisi

di
2

;

454454

455 for all vi 2 G3; and

ti ¼ si � e�ieri; di ¼ brsIiai þ fsi � brsiai ;
Hi ¼ br si � e�ieri� �

þ e�ier2i ; di0 ¼ f� braisi
ai�1:

457457

458 We get

gi
0ðsi; b�iÞ ¼ � ai � 1ð Þsiai�2 þ sIi

ai

si2

� ��

�
b�i

0

b�i

e�ieri þ D @ bT i

.
@si

� �.
Dsi

@ bT i

.
@si

b�ibrþe�ieri� �0@ 1A
þ ai � 1ð Þ ai � 2ð Þsiai�3 � 2sIi

ai

si3

� � b�ibrþe�ieri� ��
� 1b�i@ bT i

.
@si

;

460460

461where

�
D @ bT i

.
@si

� �
Dsi

¼ �2br
ti
3
þ 2ti � b�ibr
ti
2 ti � b�ibr� �2

� b�i

0br2 � b�ibr2 þ e�ieri2� ��
� 1

ti
þ 1� b�i

0br
ti � b�ibr

 !!
� 1

ti

b�ibr2 þ e�ieri2
ti � b�ibr� �

� 1

ti
2
þ 1� b�i

0br
ti � b�ibr� �2

0B@
1CA;

463463

464for all vi 2 G1;

�
D @ bT i

.
@si

� �
Dsi

¼ br
�si2

fi
0ðsiÞ � 2

si
b�i

� �
þ Di

�ti ti � b�ibr� �2 ;
466466

467for all vi 2 G2, where

Di ¼ fi
0ðsiÞ 2�

b�ibr
ti

 !
� 2b�ibr2 þ e�ieri2� �

�
b�i
b�ibr2 þ e�ieri2� �

ti ti � b�ibr� � �
 
6ti þ b�ibr 2b�ibr

ti
� 6

 !

þ br2fi0ðsiÞ b�ibr� 3ti

� �!
;

469469

470ti ¼ si � e�ieri; and
�
D @ bT i

.
@si

� �
Dsi

¼ �2br
ti
3
þ 2ti � b�ibr
ti
2 ti � b�ibr� �2

� fi
0ðsiÞbr2 � b�ibr2 þ e�ieri2� � 1

ti
þ 1� fi

0ðsiÞbr
ti � b�ibr

� �� �
� b�ibr2 þ e�ieri2� �
�

1� fi
0ðsiÞbrð Þti2 þ ti � b�ibr� �2
ti
3 ti � b�ibr� �3

0B@
1CA;

472472

473with ti ¼ si � e�ieri, for all vi 2 G3.
474Based on above equations, the next section will introduce
475how to employ algorithms to obtain the appropriate t, f
476and si of each node that satisfy Equations (2) and (3).

4775 THE ALGORITHM

478We will implement the algorithm to solve the present multi-
479variable optimization problem. And, how to obtain the defini-
480tion domain of si is described in Section 5.1, while Section 5.2
481introduces how to find the appropriate Lagrange multipliers
482f and t based on fiðsiÞ and giðsi; fiðsiÞÞ in Equations (18) and
483(19) under the constraint conditions in (2) and (3). Further-
484more, since that the difference between the preloaded tasks
485and a of each node is large, and then it is difficult to accom-
486plish load balancing only by the Lagrange theory, Section 5.3
487will solve the multi-variable optimization problem by com-
488biningwith the Lagrangemethod and data fitting technique.
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489 5.1 Defining the Search Space of si
490 As mentioned in Section 4, we view fiðsi;f; tÞ and giðsi; b�iÞ
491 as functions of si, for all 1 � i � n, the domain definition of
492 which is defined by Equation (20). However, it is impossible
493 to get a closed-form solution with regard to si for Equa-
494 tion (20). We have to devise a numeric solution. We consider

fiðsi;f; tÞ ¼ ti � Fi sið Þ;
496496

497 where

Fi sið Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ti brti þ e�ieri2� �

t
.
di

r
; vi 2 G1;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ti brti þ e�ieri2� �
sit

diti þ tbre�ieri
vuut

; vi 2 G2;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibrti þ e�ieri2� �
t
.
di

r
; vi 2 G3;

8>>>>>>>>><>>>>>>>>>:
499499

500 and

ti ¼ si � e�ieri; di ¼ brsIiai þ fsi � brsiai :502502

503

504 Given f and t, functions FiðsiÞ for all 1 � i � n have the
505 similar changing trends as core speed si changes. Fig. 2 shows
506 an example of FiðsiÞ. Assume FiðsiÞ and ti intersect at two
507 points ðsai ; FiðsaiÞÞ and ðsbi ; FiðsbiÞÞ. If sai � si � sbi , then
508 fiðsiÞ � 0; else fiðsiÞ � 0. The two values sai and sbi are
509 respectively the lower bound and upper bound of domain
510 definition of function fiðsiÞ. In order to search for the values
511 of sai and sbi , we need a point s� which satisfies fiðs�Þ > 0.
512 According to the rule that if sai � si � sbi , then fiðsiÞ � 0; else
513 fiðsiÞ � 0, we can respectively employ binary search to find
514 the value of sai between ½e�ieri; s�	 and the value of sbi between
515 ½s�; si max	, where si max represents the solution of brsIiaiþ
516 fsi � brsiai ¼ 0. Basing on the Lagrange Mean Value Theo-
517 rem, theremust be a point s� between sai and sbi thatmakes

Fi
0ðs�Þ ¼ FiðsbiÞ � FiðsaiÞ

sbi � sai
¼ tiðsbiÞ � tiðsaiÞ

sbi � sai
¼ 1:

519519

520 When sai � si � s�, we have Fi
0ðs�Þ � 1 and fiðsiÞ � 0; while

521 s� � si, we have Fi
0ðs�Þ � 1 and fiðsiÞ � 0. To take advantage

522 of this feature, Squeeze theorem and binary search method

523are used to quickly find a point s� satisfying fiðs�Þ > 0.
524Then, taking the value of s� to find the low bound sai and
525upper bound sbi (See Algorithm 2). The binary search will be
526mostly used in our algorithms. In order to avoid repeatedly
527using a list of searchmethods, we define it in Algorithm 1.

528Algorithm 1. biSearch(var; lb; ub; criterion)

529Input: var; lb; ub; criterion
530Output: var
5311: while (ub� lb > ") do
5322: var ðubþ lbÞ=2;
5333: if (criterion) then
5344: ub var;
5355: else
5366: lb var;
5377: end if
5388: end while
5399: return var.

540Algorithm 2. getDomainof si(e�i; eri; br;f; t)
541Input: e�i; eri; br;f; t.
542Output: lbsi, ubsi.
5431: lb e�ieri; ub MaxSi;
5442: si  biSearchðsi; lb; ub;fsi þ brsaiIi � brsaii < 0Þ;
5453: smax  si; lb e�ieri;
5464: while (fiðsi;f; tÞ < 0) do
5475: if (f 0iðsi; f; tÞ < 0) then
5486: lb si;
5497: else
5508: ub si;
5519: end if
55210: si  ðubþ lbÞ=2;
55311: end while
55412: lb e�ieri; ub si; s�  si;
55513: si  biSearchðsi; lb; ub; fiðsi; f; tÞ > 0ÞÞ;
55614: lbsi si; lb s�; ub smax;
55715: si  biSearchðsi; lb; ub; fiðsi; f; tÞ < 0ÞÞ;
55816: ubsi si;
55917: return ubsi, lbsi.

5605.2 Searching for Lagrange Multipliers

561Our target is to find the appropriate f , t and all of si
562(1 � i � n), which can make conditions Equations (2) and
563(3) be satisfied basing on fiðsiÞ and giðsi; fiðsiÞÞ. Our strategy
564is that by fixing a Lagrange multiplier we try to search for
565an appropriate value of the other Lagrange multiplier which
566can make one constraint condition (Equations (2) or (3) be
567satisfied, then adjusting the value of first Lagrange multi-
568plier, under the new value, we continue to search the corre-
569sponding value of the other Lagrange multiplier. The
570process will finish only if the two appropriate Lagrange
571multipliers are found, or if the loop conditions are violated.

5725.2.1 Searching Lagrange Multiplier t

573Theorem 1. If there is no dedicated task on a node (e�i ¼ 0), then
574the speed of the node si is independent of t, and has the follow-
575ing form:

sIi
ai 1� brð Þ ¼ braisi

ai�1 � f
� �

si:
577577

578

Fig. 2. Several examples of FiðsiÞ.
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579 Proof. Taking e�i ¼ 0 into fiðsiÞ and @ bT i

.
@si, we can get

b�i ¼ sibr 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibrt
sIiai þ fsi � brsiai

s !
; (21)

581581

582 and

@ bT i

@si
¼ � 1

si2
brþ b�ibr2 2si � b�ibr� �

si � b�ibr� �2
0B@

1CA
¼ � 1

si2
brþ sibr 1� Lið Þbr2 2si � sibr 1� Lið Þbr� �

si � sibr 1� Lið Þbr� �2
0B@

1CA
¼ � br

si2
1þ si

2 1� Lið Þ 1þ Lið Þ
si2Li

2

� �
¼ � br

si2
1

Li
2

¼ � sIi
ai þ fsi � brsiai

tsi2
;

(22)

584584

585 where

Li ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibrt
sIiai þ fsi � brsiai

s
:

587587

588 Substituting Equations (21) and (22) into Equation (17), we
589 can get

t ¼ br
sIi

ai þ fsi � brsiai
tsi2

ai � 1ð Þsiai�2 þ sIi
ai

si2

� �
;

591591

592 that is,

sIi
ai þ fsi � brsiai

si2
¼ br ai � 1ð Þsiai�2 þ sIi

ai

si2

� �
:

594594

595 Basing on the above equation, we obtain

sIi
ai 1� brð Þ ¼ braisi

ai�1 � f
� �

si;
597597

598 and the theorem is proven.

599 If there are dedicated tasks on a node, it is very difficult
600 to directly solve this problem by using mathematical deriva-
601 tion, and impossible to get a closed-form solution. Through
602 observing the form of giðsi; fiðsiÞÞ, we notice that if we set
603 e�i ¼ 0 (there are no dedicated jobs), then the form of
604 giðsi; fiðsiÞÞwill be translated into

giðsi; b�iÞ ¼ 1

�@ bT i

.
@si

ai � 1ð Þsiai�2 þ sIi
ai

si2

� �
:

606606

607

608 The response time Ti could be treated as a convex function
609 of si. Thus,�@ bT i

.
@si will decrease as si increases. si

ai�2 is an
610 increasing function of si, and sIi

ai
	
si

2 is a decreasing func-
611 tion of si, which implies that the above equation should
612 decrease as si increases and then increase as si continues to
613 increase. The feature of function giðsi; fiðsiÞÞ will not be
614 changed even if e�i is not equal to zero. Virtually this feature
615 can be observed from a great deal of data experiments. Fig. 3

616shows an example of four nodes, and each node is preloaded
617with different amount of tasks.

618Algorithm 3. find turning Point si(f; e�i; eri)
619Input: f; e�i; eri.
620Output: si.
6211: lb; ub getDomainofsiðe�i; eri; br;f; tÞ;
6222: si  biSearchðsi; lb; ub; g0iðfiðsiÞ; siÞ � 0Þ;
6233: return si  si.

624Each giðsi; b�iÞ has itsminimumvalue,meaning that there is
625a point si of speed si thatmakes giðsi; b�iÞ obtain theminimum
626value. The si can be obtained by using the derivative of
627giðsi; b�iÞ with respect to si (See Algorithm 3). The Lagrange
628multiplier t should have the same value for each giðsi; b�iÞ,
629where 1 � i � n. Thus, the low bound of giðsi; b�iÞ is the maxi-
630mum value of all minimum values of giðsi; b�iÞ, namely, the
631maximum value of all giðsi; fiðsiÞÞ. From Fig. 3, we can
632observe that for each giðsi; b�iÞ there are two values of si that
633can bemapped onto the same value of t, one located at the left
634side of si and the other one located at the right side of si.
635Notice that for the same t, the difference in speed si of each
636node with different preloaded tasks is large, and the change
637in value of function giðsi; b�iÞ as si changes is drastic, if we take
638the left side value as the value of si, this implies that the left
639side value is not a suitable value of si. In fact, we have tried to
640take the left side value as the value of si, and the result is
641abnormal. Thus, given a value of t, we adopt the right side
642value corresponding to the t as the value of si. At the right
643side of si, each giðsi; b�iÞ is a monotone increasing function of
644si. Hence, given a value of giðsi; b�iÞ, we can immediately get
645the corresponding value of si (SeeAlgorithm 4).

646Algorithm 4. Calculate si(t; si)

647Input: t; si.
648Output: si.
6491: lb si; ub ubsi;
6502: si  biSearchðsi; lb; ub; giðsi; fiðsiÞÞ < tÞ;
6513: return si.

652In order to satisfy the conditions in Equations (2) and (3),
653we need to adjust f and t. Each giðsi; b�iÞ is treated as a func-
654tion of si, and still represents the value of t. Function fiðsiÞ

Fig. 3. Several examples of function giðsi; b�iÞ.
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656 should equal the value of t included in fiðsiÞ. Let
657 giðsi; b�iÞ ¼ t, through Algorithm 4 we can get the value of si
658 corresponding to the t. Our target is to get an appropriate t

659 which can make Equation (3) is satisfied. Thus, we have to
660 adjust the value of t. By analyzing Equation (17), we observe
661 that the si will decrease as t increases. In Fig. 4, we respec-
662 tively give a series of si and corresponding b�i, which are the
663 solutions of giðsi; b�iÞ ¼ t when t is set to a different values.
664 In distributed systems, if the core speed of a node is reduced,
665 then the node will be assigned with lesser tasks, this leads to
666 the average response time of general tasks on this node to
667 reduce. Since bTi / b�i, b�i / si and si / 1=t, then b�i

bTi / 1=t,
668 this implies that given a appropriate value of f, the binary
669 search method could be employed to find the appropriate t

670 that can be used to get all speeds si making the constraint
671 condition Equation (3) be satisfied (see Algorithm 5).

672 Algorithm 5. CalculateAll si

673 Input: f; e�1; . . . ; e�n; er1; . . . ; ern; br; sI1; . . . ; sIn; bT .
674 Output: s1; s2; . . . ; sn.
675 1: for (1 i; i � n; i iþ 1) do
676 2: si  findTurningPoint si(f; e�i; eri);
677 3: end for
678 4: ub z; lb 0;
679 5: t; si  biSearchðt; lb; ub;
680 1

�

Pn
i¼1 fiðcalculatesiðt; siÞ;f; tÞbTi < bT Þ;

681 6: return t; s1; s2; . . . ; sn.

682 5.2.2 Searching Lagrange Multiplier f

683 It can be observed from Equation (18) that for all 1 � i � n,
684 if we reduce the value of f, then the value of fiðsiÞ will
685 decrease. Thus, actually, fiðsiÞ could be viewed as increas-
686 ing function of f. Since given an appropriate f, a t that
687 makes condition Equation (3) be satisfied could be obtained,
688 the condition Equation (2) also can be met by adjusting f. In
689 fact, we have the following rule: For all si solved in Algo-
690 rithm 5 that satisfy Equation (3), b�i will be increasing mono-
691 tonically with f, this indicates that

Pn
i¼1 b�i will increase

692 monotonically with f. In terms of the rule, our solution to
693 the problem of optimal power allocation and load distribu-
694 tion can be described as follows:

695 � Step 1: Given a f, using Algorithm 5 to find the t that
696 equals to all of giðsi; b�iÞ (1 � i � n), as well as can
697 make Equation (3) be satisfied.
698 � Step 2: Based on Step 1, adjust f until the condition
699 Equation (2) is satisfied.
700 Through the above Steps (1) and (2) we can find the opti-
701 mal solution to our problem. However, Fig. 2 suggests that

702if the value of f becomes smaller, the value of giðsi; b�iÞ will
703become larger, this means that a small f will be matched
704with a large t. By observing Equation (18), we know that
705fiðsiÞ may be less than zero when f is excessively small and
706t is too large. Under this situation, there might not exist
707such a common t that makes all si satisfy Equation (3), this
708means that using Steps (1) and (2) cannot solve the current
709problem. According to a common t that exists, we can find
710a threshold of f called as fB, when f � fB there will exist a
711common t that can make all si satisfy Equation (3)
712(1 � i � n), while f < fB there will not exist a common t.
713Since a f is matched with a b�, there exist a b�B corresponding
714to the fB. When b� � b�B, we can find the optimal solution to
715our problem basing on Lagrange system; when b� < b�B,
716Lagrange system cannot be used to solve the problem
717because Lagrange multipliers cannot be found. We call the
718searching process for fB as calbdoff, due to limited space, it
719is moved to the supplementary material, which can be
720found on the Computer Society Digital Library at http://
721doi.ieeecomputersociety.org/10.1109/TC.2017.2693186.
722Algorithm 6 can be employed to solve our problem under
723the situation that b� > b�B. How to deal with the situation
724that b� < b�B is described in next section.

725Algorithm 6. Caculate_P1

726Input: e�1; . . . ; e�n; er1; . . . ; ern; br; bT .
727Output: b�1; . . . ; b�n, s1; . . . ; sn; f; t.
7281: fB  calbdoff;
7292: lb fB;
7303: repeat
7314: f 2f;
7325: s1; s2; . . . ; sn  calculateAll si();
7336: until b�1 þ b�2 þ � � � þ b�n > b�
7347: ub f;
7358: while (ub� lb > ") do
7369: f ðlbþ ubÞ=2;
73710: s1; s2; . . . ; sn  calculateAllsi();
73811: if (b�1 þ b�2 þ � � � þ b�n < b�) then
73912: lb f;
74013: else
74114: ub f;
74215: end if
74316: end while
74417: return b�1; . . . ; b�n, s1; . . . ; sn;f; t.

7455.3 Data Fitting

746Notice that the key factor for solving our problem is how to
747determine the speed si for each node. In other words, load
748balancing depends on power allocation. Therefore, the first
749work to solve our problem should be how to determine
750the core speed for each node. We cannot adopt Lagrange
751system to obtain the optimal core speed of each node when
752b� < b�B, while it is easy for us to get a lot of optimal alloca-
753tion data when b� � b�B. Since the background of our
754problem is clear, we insist that there exists a mapping rela-
755tionship between arrive rate of general tasks b� and each
756core speed si. Since a lot of optimal allocation data can be
757obtained by using Lagrange system when b� � b�B, these
758data could be employed as training data to fit the relation-
759ship between arrive rate of general tasks b� and each core
760speed si. The details are described as follows:

Fig. 4. The si and b�i changing tendency as t changes.
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of761 Assume that through Lagrange system, we have a group

762 of optimal speed allocation data points ðb�; s1; s2; . . . ; snÞ1;
763 ðb�; s1; s2; . . . ; snÞ2, . . . ,ðb�; s1; s2; . . . ; snÞN . N is the number of
764 the data points, b� is different for each data point, and
765 b� > b�B for all the N data points. We want to estimate each
766 core speed si (1 � i � n) under the situation that arrive rate
767 of general tasks is b� and b� < b�B. We shall fit the data using
768 a polynomial function of the form

si ¼ wi0 þ wi1
b�þ � � � þ wiM

b�M ¼
XM
k¼0

wk
b�k
;

770770

771 where M is the order of the polynomial, and b�k
denotes b�

772 raised to the power of k. The polynomial coefficients
773 wi0; wi1; wiM require to be solved. We adopt root-mean-
774 square to fit the data, which can immediately get the values
775 ofwi0; wi1; wiM , since each of them has a closed form solution.
776 Once we get the polynomial coefficients wi0; wi1; . . . ; wiM ,
777 thenwe obtain the equivalent speed si of node vi, the remain-
778 ing works is to find the appropriate b�1; b�2; . . . ; b�n, f and t

779 subject to b�1 þ b�2 þ � � � þ b�n ¼ b� , and 1b� ðb�1
bT 1 þ b�2

bT 2 þ � � � þ
780 b�n

bTnÞ � bT: Since speeds for all nodes have been obtained,

781 the appropriate b�1; b�2; . . . ; b�n, f and t can be obtained by

removing the steps for searching speeds in Algorithm 6. Due

to space limitation, the algorithm regrading how to solve the

problem under the situation that b� < b�B is moved into the

supplementarymaterial, available online.
782 For a system under analysis, we first calculate the thresh-
783 old b�B and fB, and then determine which method could be
784 adopted to solve our problem. It is worth noting that
785 although the result is solved by searching method, all meth-
786 ods we adopted are binary search methods. Moreover, the
787 search for si and b�i (1 � i � n) of each node is independent
788 except for the shared Lagrange multipliers f and t. This
789 implies that our method can exploit distribution and paral-
790 lelism to solve the problem when the system scalability fac-
791 tor (n) is large.

792 6 NUMERICAL EXAMPLES

793 In this section, we demonstrate a number of numerical
794 examples. All parameters in our examples are for illustra-
795 tion purposes only, and could be changed to any other real
796 values. In heterogeneous distributed parallel computing
797 environments, each parameter of a node can have an impact
798 on power allocation and load distribution. We show these
799 impacts, and sum up the objective laws observed from our
800 experimental data in the latter part of each section.

8016.1 The Impact of Idle Speed sIi
802In this section, we consider the impact of idle speed sIi on
803power allocation and load distribution. We consider a group
804of n ¼ 7 embedded nodes. We assume that e� ¼ 2:0 per sec-
805ond, eri ¼ 0:3 (giga instructions), ai ¼ 2:7, Pi

� ¼ 0:1Watts, for
806all 1 � i � n. Further sI1 ¼ 0:2, sI2 ¼ 0:4, sI3 ¼ 0:6, sI4 ¼ 0:8,
807sI5 ¼ 1:0, sI6 ¼ 1:2, sI7 ¼ 1:4 IPS, b� ¼ 16 per second, br ¼ 0:3
808(giga instructions), and bT ¼ 0:5 seconds. We show the opti-
809mal load distribution b�1; b�2; . . . ; b�7, the optimal node speeds
810s1; s2; . . . ; s7, the node utilizations r1; r2; . . . ; r7, the node
811power consumption P1; P2; . . . ; Pn and the average general
812task response time T1; T2; . . . ; T7. Results shown in Table 2
813are for all nodes in the system employing the Discipline 1,
814“dedicated tasks without priority”, and the system power
815consumption is 29.04084 Watts. The similar results can be
816obtained when system queueing disciplines are set to Disci-
817plines 2 and 3. Due to space limitation, they are moved to the
818supplementarymaterial, available online.
819From this section, we can observe that the system will
820assignmore tasks to a nodewith higher core idle-power, which
821has a physical meaning, since the node consumes more
822power when it is idle, trying to reduce its idle time can
823decrease power loss.

8246.2 The Impact of Power Consumption Exponent ai

825In this section, we consider the impact of ai on power alloca-
826tion and load distribution. We also consider a group of
827n ¼ 7 embedded nodes. We assume that e� ¼ 2:0 per second,
828eri ¼ 0:3 (giga instructions), sIi ¼ 0:3 IPS, Pi

� ¼ 0:1 Watts for
829all 1 � i � n; b� ¼ 17 per second. Further br ¼ 0:3 (giga
830instructions), bT ¼ 0:6 seconds, a1 ¼ 2:6, a2 ¼ 2:65, a3 ¼ 2:7,
831a4 ¼ 2:75, a5 ¼ 2:8, a6 ¼ 2:85, and a7 ¼ 2:9. Results shown
832in Table 3 are for all nodes in the system employing the
833Discipline 1, and the system power consumption is
834P ¼ 27:324661 Watts. The results for all nodes employing
835Disciplines 2 and 3 are moved to supplementary material,
836available online.
837From this section, we can observe that the system will
838assign more tasks to a node with a smaller value of ai,
839which has a physical meaning, i.e., if a node is capable of
840performing at the same capacity of work as other nodes, but
841consumes less power, then assigning more tasks to the node
842is reasonable.

8436.3 The Effect of Data Fitting

844In this section, we consider the case that using Lagrange sys-
845tem cannot obtain the optimal power allocation and load

TABLE 2
Numerical Data in Section 6.1 When System Priority

Strategy Is Dedicated Jobs without Priority

i b�i si ri Pi Ti

1 2.2312497 1.8916260 0.6710496 3.8558076 0.4821204
2 2.2363917 1.8912320 0.6720050 3.8824050 0.4836255
3 2.2482624 1.8903044 0.6742187 3.9441767 0.4871508
4 2.2685086 1.8886612 0.6780213 4.0507656 0.4933329
5 2.2978527 1.8861329 0.6835975 4.2082049 0.5027002
6 2.3360110 1.8825563 0.6909771 4.4187123 0.5156827
7 2.3817199 1.8777717 0.7000403 4.6807678 0.5326177

TABLE 3
Numerical Data in Section 6.2 When System Priority

Strategy Is Dedicated Jobs without Priority

i b�i si ri Pi Ti

1 2.9169995 2.0225077 0.7293420 4.6642845 0.5480374
2 2.7258834 1.9465756 0.7283380 4.3662016 0.5673108
3 2.5540980 1.8778833 0.7275368 4.0986037 0.5863338
4 2.3990575 1.8154982 0.7269173 3.8573070 0.6051059
5 2.2586006 1.7586370 0.7264604 3.6388327 0.6236268
6 2.1309091 1.7066375 0.7261487 3.4402690 0.6418969
7 2.0144441 1.6589363 0.7259671 3.2591625 0.6599162
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846 distribution strategy. We fit the relationships between the
847 arrival rate of general tasks and core speeds for each node.
848 The average task size and acceptable response time of
849 generic tasks are br ¼ 0:25 (giga instructions) and bT ¼ 0:5
850 seconds, respectively. The other parameters are e�i ¼ 2:0,
851 ai ¼ 2:6, sIi ¼ 0:5 for all 1 � i � 8, (er1, er2, er3, er4, er5, er6, er7, er8) is
852 (0.2, 0.3, 0.4, 0.2, 0.3, 0.4, 0.2, 0.4), nodes 1, 2, 3 employeDisci-
853 pline 1, nodes 4, 5, 6 employe Discipline 2, and nodes 7, 8
854 employe Discipline 3. For each node vi, we select 170 data
855 points (b� and corresponding si) from region 23 � b� � 40 as
856 training data set, which have been solved with Lagrange
857 system. Fig. 5 shows the fitting results when the order of
858 polynomialM isM ¼ 2,M ¼ 3,M ¼ 4 andM ¼ 5. Once the
859 fitting function is obtained, we could obtain the speed si
860 immediately for each node corresponding to a given b�.
861 Therefore, based on si, it is easy for us to obtain the task allo-
862 cation b�i assigned to each node, as well as the power con-
863 sumption for the overall system. Table 4 shows the power
864 consumptions corresponding to different values ofM and b�.
865 The solution reached by this fitting method might not be
866 an optimal solution. As we all know, a genetic algorithm
867 (GA) can solve non-linear problems, and achieve a global
868 approximate optimal solution. In order to check the quality
869 of solutions, we compare our results with the solutions pro-
870 duced by the genetic algorithm from the genetic algorithm
871 toolbox GAOT in MATLAB. We use the same group size
872 and input parameters as Section 6.6, and set the order of the
873 polynomial as M ¼ 4. The results of this comparison are
874 shown in Fig. 6. Meanwhile, we compare the solutions pro-
875 vided by fitting method with optimal solutions. The results
876 appear in Fig. 7.
877 From Fig. 6, we observe that our solutions, most of the
878 time, are better than the solutions provided by the GA

879algorithm. This result implies that the quality of solutions
880obtained by our method is good. From Fig. 7, we observe
881that the difference between fitting solutions and optimal sol-
882utions are within 0.01 W. This finding implies that the fitting
883solutions could replace the optimal solutions to certain
884degree. The benefit of the fitting method is that it could
885reduce the search process for finding each core speed.
886These results demonstrate that a relationship exists
887between the total task arrival rate and the core speed si; the
888bigger the order of the polynomial M, the closer it is to the
889optimal power allocation. Moreover, this work provides an
890important insight. When the difference between the pre-
891loaded tasks and a of each node is large, the workload of
892the system result in an imbalance between each node prior
893to assigning general tasks to each node. It is difficult to
894accomplish load balancing when the task arrive rate b� is
895small. Thus, under these circumstances, it is possible that
896using a Lagrange system cannot solve the problem of opti-
897mal power allocation and load balancing on the system.

8986.4 The Impact of Preloaded Tasks

899Due to space limitation, these derivations are moved to the
900supplementary material, available online.

9016.5 The Impact of Queueing Discipline

902Due to space limitation, these derivations are moved to the
903supplementary material, available online.

9046.6 The Situation of a Fully Heterogeneous System

905Due to space limitation, this section is moved to the supple-
906mentary material, available online.

Fig. 5. Fitting results.

TABLE 4
Numerical Data in Section 6.3

M b� ¼ 18 b� ¼ 19 b� ¼ 20 b� ¼ 21 b� ¼ 22

2 25.1558 W 26.4602 W 27.8053 W 29.1919 W 30.6206 W
3 25.1039 W 26.4173 W 27.7718 W 29.1678 W 30.6055 W
4 25.0748 W 26.3923 W 27.7526 W 29.1553 W 30.5994 W
5 25.0687 W 26.3827 W 27.7427 W 27.7427 W 30.5968 W

Fig. 6. Fitting versus GA.

Fig. 7. Fitting versus optimal.

HUANG ET AL.: ENERGY-EFFICIENT RESOURCE UTILIZATION FOR HETEROGENEOUS EMBEDDED COMPUTING SYSTEMS 11



IEE
E P

ro
of907 6.7 The Impact of System Scalability

908 Due to space limitation, this section is moved to the supple-
909 mentary material, available online.

910 6.8 Performance Comparison

911 Due to space limitation, this section is moved to the supple-
912 mentary material, available online.

913 7 EXPERIMENT EVALUATION

914 The results shown in Section 6 are theoretical results. In this
915 section, we provide our findings concerning the differences
916 between the theoretical results and the results obtained
917 from experimental evaluation.
918 In the evaluation experiments we consider the system
919 consisting of six nodes, the average arrive rate and task size
920 of general tasks are b� ¼ 7:8 and br ¼ 0:2 respectively, the aver-
921 age arrive rates and task size of dedicated tasks on each node
922 are e�i ¼ 0:6; 1 � i � 6, and er1 ¼ er2 ¼ 0:1, er3 ¼ er4 ¼ 0:3,
923 er5 ¼ er6 ¼ 0:45, respectively, and the basic power and power
924 consumption exponent is Pi

� ¼ 1:35W and ai ¼ 3:0
925 (1 � i � 6) respectively. The idle speed is sIi ¼ 0; 1 � i � 6.
926 For this investigation, all nodes employedDiscipline 1. Based
927 on these parameters, we obtained the optimal power and
928 allocation of tasks shown in Table 5. Based on Table 5, the
929 experimental evaluation is divided into two parts as follows.

930 7.1 Simulation Evaluation

931 The following discussion reviews the differences between
932 the theoretical values and simulation values obtained from
933 the execution of an established number of tasks.
934 The result listed in Table 5 is a theoretical value. To
935 investigate the difference between the theoretical value and
936 actual simulation value, we generated a number of general
937 and dedicated tasks. The arrival interval times and task
938 sizes for general tasks are exponential random variable 1=b�i

939 and br respectively; for dedicated tasks the arrival interval
940 times and task sizes are 1=e�i and eri respectively.

941Once these times are established, we schedule these tasks.
942The scheduling results are shown in Table 6, in which “TT”
943represents the total time, “RTGT” represents the response
944time for all of general tasks, “GN” represents the numbers of
945general tasks, “Watters” represents the total power cost,
946Pi ¼ watters=TT represents the average power cost per sec-
947ond, and Ti ¼ RTGT=GN represents the average response
948time of general tasks. By comparing Tables 5 and 6, we find
949that there is a good agreement between the theoretical and
950simulation results regarding the average response time of
951general tasks Ti and power cost per secondsPi.

9527.2 Practical Evaluation

953Based on Table 5 and the tasks generated in Section 7.1, we
954will investigate the difference between theoretical results and
955practical results on a real platform consisting of the six nodes
956(embedded boards) corresponding respectively with nodes
957mentioned in Section 7, and its detailed parameters are listed
958in Table 7. The testing process is divided into three steps.
959Step 1: We need to test the core speed (IPS) and power
960when core is operating at various frequencies. A program
961commonly consists of a number of assembly instructions,
962such as JUMP, MOV, CMP, ADD, and MUL. By recording
963the actual number of assembly instructions and correspond-
964ing execution times, we are able to obtain the IPS. Power is
965the product of current and voltage. The board voltage is kept
966at 5 V in our experiment. Notice that the tested power not
967only includes the processor’s power, but also the power of
968other components. While the power of the processor is
969dynamic, the power of the other components is relatively sta-
970ble. Thus, we are able to treat the core’s static power and all
971of the other component’s power as the basic powerP �i , which
972could be obtained by setting the core’s frequency to 0 GHz.
973When the core is idle, its core idle-power equals the node’s
974(embedded board) power minus P �i . In this experiment, the
975frequency of the Cortex-A20 dual core CPU is set at 336MHz
976when the status of its core is idle. In real environments, the
977power consumption exponent ai is usually defined as 3.0.
978Thus, the idle speed can be calculated based on the core idle-
979power and ai. The data obtained from tests are shown in
980Table 8, where PB represents the power of node when there
981are tasks running, and PI represents the power of node that

982there is no task running, and si is derived by sIi ¼
ffiffiffiffiffiffiffiffiffiffiffi
PI�P�

i
2

a
q

.

983Step 2: Since that the optimal speed shown in Table 5 is
984computed theoretically, in the actual test platform, the real
985core frequency needs to be adjusted to map the correspond-
986ing core speed into theory value. Based on Tables 5 and 8, we
987adjust the core frequency in terms of the smallest gap between

TABLE 5
Numerical Data in Section 7

i b�i si ri Pi Ti

1 1.952 0.664 0.678 1.548 0.893
2 1.952 0.664 0.678 1.548 0.893
3 1.308 0.643 0.686 1.532 1.132
4 1.308 0.643 0.686 1.532 1.132
5 0.638 0.587 0.677 1.487 1.664
6 0.638 0.587 0.677 1.487 1.664

TABLE 6
Simulation Results

i TT RTGT GN watters Pi Ti

1 19,434.67 34,822.44 38,228 31,378.00 1.554 0.912
2 19,370.9 33,757.77 38,298 31,276.79 1.551 0.884
3 36,713.94 53,570.74 48,159 58,555.09 1.539 1.114
4 36,545.64 55,196.02 48,212 58,320.22 1.535 1.143
5 65,144.49 68,610.00 40,653 100,650.40 1.480 1.685
6 65,573.72 68,663.13 40,930 101,284.43 1.484 1.674

TABLE 7
Platform Parameters

CPU OS Memory DVFS tool

Cortex-A20 Debian 4.7.2-5 1 G cpufreq

Frequency

1.01 0.960 0.912 0.864 0.816 0.768
0.744
0.720 0.696 0.672 0.648 0.600 0.528
0.480
0.408 0.384 0.360 0.336 GHz

Max transition latency 2 ms
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989 quency that we could get speed 0.667, 0.644, and 0.58 Giga
990 IPS is 1.01, 0.96, and 0.864 GHz, respectively. Therefore, each
991 node’s frequency is adjusted to corresponding level.
992 Step 3: In the course of experiment, by recording the
993 arrival, start and completion time of each task, we can calcu-
994 late the total time (TT ), execution time (ET ) and response
995 time of all tasks. Note that Cortex-A20 includes two cores.
996 The power consumption per seconde for a node with one
997 core can be calculated as

Pi ¼
PB�P�i

2 þ P �i
� �

�ET þ PI�P�i
2 þ P �i

� �
� TT �ETð Þ

TT
:

999999

1000

1001 The PB and PI are obtained from Table 8.
1002 The TT , ET ,RTGT (response time of all general tasks), ri,
1003 Pi, and Ti are shown in Table 9. From the Tables 5 and 9, we
1004 can find out that the errors of response time between optimal
1005 and practical result are less than 0.06 seconds (3.6 percent),
1006 and the errors of power are less than 0.04W (2:5 percent). We
1007 analyse that the errors between theoretical value and practi-
1008 cal value are due to the following reasons. (1) The speeds are
1009 made a slight adjustment. (2) Some power may be ignored.
1010 (3) Speed or power test process may be uncertain. (4) Core
1011 environment exists noise etc. In summary, the experiments
1012 show that the present theoretical results are basically in line
1013 with the practical results.

1014 8 CONCLUSION

1015 In this paper, we have studied the joint optimization prob-
1016 lem of load balancing and power allocation in heterogeneous
1017 distributed embedded systems. From the perspective of
1018 hardware, we specify that all nodes in the system are hetero-
1019 geneous, with each node having a different maximum speed
1020 and power consumption. We also specify that the priority of
1021 each task is different on each node, and the speed of each
1022 core is different from the perspective of the application.
1023 We propose an efficient algorithm to solve the joint opti-
1024 mization problem using a Lagrangemethod.When the prob-
1025 lem could not be solved using the Lagrange method, we

1026design an algorithm to determine the appropriate speed of
1027each core by using a fitting datamethod to fit the relationship
1028between task arrival rate and core speed. This approach sol-
1029ves the problem. Extensive numerical examples are given to
1030demonstrate the impact of each factor on the system. Further-
1031more, we employe both simulation and practical evaluation
1032to show that present theoretical results are consistent with
1033the practical results. This research makes an original contri-
1034bution to optimal load balancing and power allocation with
1035performance constraint for multiple embedded computing
1036nodes in heterogeneous and distributed embedded systems.
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